Added submodule contents into tree

This commit is contained in:
darktux
2024-04-05 01:58:27 +02:00
parent 01a752555c
commit 9b991208cd
4934 changed files with 1657477 additions and 5 deletions

4
externals/mbedtls/docs/.gitignore vendored Normal file
View File

@@ -0,0 +1,4 @@
*.html
*.pdf
_build/
api/

File diff suppressed because it is too large Load Diff

40
externals/mbedtls/docs/Makefile vendored Normal file
View File

@@ -0,0 +1,40 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help clean apidoc breathe_apidoc Makefile
# Intercept the 'clean' target so we can do the right thing for apidoc as well
clean:
@# Clean the apidoc
$(MAKE) -C .. apidoc_clean
@# Clean the breathe-apidoc generated files
rm -rf ./api
@# Clean the sphinx docs
@$(SPHINXBUILD) -M clean "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
apidoc:
@# Generate doxygen from source using the main Makefile
$(MAKE) -C .. apidoc
breathe_apidoc: apidoc
@# Remove existing files - breathe-apidoc skips them if they're present
rm -rf ./api
@# Generate RST file structure with breathe-apidoc
breathe-apidoc -o ./api ../apidoc/xml
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile breathe_apidoc
@# Build the relevant target with sphinx
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@@ -0,0 +1,34 @@
PANDOC = pandoc
default: all
all_markdown = \
alternative-implementations.md \
mbed-crypto-storage-specification.md \
psa-crypto-implementation-structure.md \
psa-migration/psa-limitations.md \
psa-migration/strategy.md \
psa-migration/tasks-g2.md \
psa-migration/testing.md \
testing/driver-interface-test-strategy.md \
testing/invasive-testing.md \
testing/psa-storage-format-testing.md \
testing/test-framework.md \
tls13-support.md \
# This line is intentionally left blank
html: $(all_markdown:.md=.html)
pdf: $(all_markdown:.md=.pdf)
all: html pdf
.SUFFIXES:
.SUFFIXES: .md .html .pdf
.md.html:
$(PANDOC) -o $@ $<
.md.pdf:
$(PANDOC) -o $@ $<
clean:
rm -f *.html *.pdf
rm -f testing/*.html testing/*.pdf

View File

@@ -0,0 +1,91 @@
Alternative implementations of Mbed TLS functionality
=====================================================
This document describes how parts of the Mbed TLS functionality can be replaced at compile time to integrate the library on a platform.
This document is an overview. It is not exhaustive. Please consult the documentation of individual modules and read the library header files for more details.
## Platform integration
Mbed TLS works out of the box on Unix/Linux/POSIX-like systems and on Windows. On embedded platforms, you may need to customize some aspects of how Mbed TLS interacts with the underlying platform. This section discusses the main areas that can be configured.
The platform module (`include/mbedtls/platform.h`) controls how Mbed TLS accesses standard library features such as memory management (`calloc`, `free`), `printf`, `exit`. You can define custom functions instead of the ones from the C standard library through `MBEDTLS_PLATFORM_XXX` options in the configuration file. Many options have two mechanisms: either define `MBEDTLS_PLATFORM_XXX_MACRO` to the name of a function to call instead of the standard function `xxx`, or define `MBEDTLS_PLATFORM_XXX_ALT` and [register an alternative implementation during the platform setup](#alternative-implementations-of-platform-functions).
The storage of the non-volatile seed for random generation, enabled with `MBEDTLS_ENTROPY_NV_SEED`, is also controlled via the platform module.
For timing functions, you can [declare an alternative implementation of the timing module](#module-alternative-implementations).
On multithreaded platforms, [declare an alternative implementation of the threading module](#module-alternative-implementations).
To configure entropy sources (hardware random generators), see the `MBEDTLS_ENTROPY_XXX` options in the configuration file.
For networking, the `net_sockets` module does not currently support alternative implementations. If this module does not work on your platform, disable `MBEDTLS_NET_C` and use custom functions for TLS.
If your platform has a cryptographic accelerator, you can use it via a [PSA driver](#psa-cryptography-drivers) or declare an [alternative implementation of the corresponding module(s)](#module-alternative-implementations) or [of specific functions](#function-alternative-implementations). PSA drivers will ultimately replace the alternative implementation mechanism, but alternative implementation will remain supported in at least all Mbed TLS versions of the form 3.x. The interface of PSA drivers is currently still experimental and subject to change.
## PSA cryptography drivers
On platforms where a hardware cryptographic engine is present, you can implement a driver for this engine in the PSA interface. Drivers are supported for cryptographic operations with transparent keys (keys available in cleartext), for cryptographic operations with opaque keys (keys that are only available inside the cryptographic engine), and for random generation. Calls to `psa_xxx` functions that perform cryptographic operations are directed to drivers instead of the built-in code as applicable. See the [PSA cryptography driver interface specification](docs/proposed/psa-driver-interface.md), the [Mbed TLS PSA driver developer guide](docs/proposed/psa-driver-developer-guide.md) and the [Mbed TLS PSA driver integration guide](docs/proposed/psa-driver-integration-guide.md) for more information.
As of Mbed TLS 3.0, this interface is still experimental and subject to change, and not all operations support drivers yet. The configuration option `MBEDTLS_USE_PSA_CRYPTO` causes parts of the `mbedtls_xxx` API to use PSA crypto and therefore to support drivers, however it is not yet compatible with all drivers.
## Module alternative implementations
You can replace the code of some modules of Mbed TLS at compile time by a custom implementation. This is possible for low-level cryptography modules (symmetric algorithms, DHM, RSA, ECP, ECJPAKE) and for some platform-related modules (threading, timing). Such custom implementations are called “alternative implementations”, or “ALT implementations” for short.
The general principle of an alternative implementation is:
* Enable `MBEDTLS_XXX_ALT` in the compile-time configuration where XXX is the module name. For example, `MBEDTLS_AES_ALT` for an implementation of the AES module. This is in addition to enabling `MBEDTLS_XXX_C`.
* Create a header file `xxx_alt.h` that defines the context type(s) used by the module. For example, `mbedtls_aes_context` for AES.
* Implement all the functions from the module, i.e. the functions declared in `include/mbedtls/xxx.h`.
See https://mbed-tls.readthedocs.io/en/latest/kb/development/hw_acc_guidelines for a more detailed guide.
### Constraints on context types
Generally, alternative implementations can define their context types to any C type except incomplete and array types (although they would normally be `struct` types). This section lists some known limitations where the context type needs to be a structure with certain fields.
Where a context type needs to have a certain field, the field must have the same type and semantics as in the built-in implementation, but does not need to be at the same position in the structure. Furthermore, unless otherwise indicated, only read access is necessary: the field can be `const`, and modifications to it do not need to be supported. For example, if an alternative implementation of asymmetric cryptography uses a different representation of large integers, it is sufficient to provide a read-only copy of the fields listed here of type `mbedtls_mpi`.
* AES: if `MBEDTLS_AESNI_C` or `MBEDTLS_PADLOCK_C` is enabled, `mbedtls_aes_context` must have the fields `nr` and `rk`.
* DHM: if `MBEDTLS_DEBUG_C` is enabled, `mbedtls_dhm_context` must have the fields `P`, `Q`, `G`, `GX`, `GY` and `K`.
* ECP: `mbedtls_ecp_group` must have the fields `id`, `P`, `A`, `B`, `G`, `N`, `pbits` and `nbits`.
* If `MBEDTLS_PK_PARSE_EC_EXTENDED` is enabled, those fields must be writable, and `mbedtls_ecp_point_read_binary()` must support a group structure where only `P`, `pbits`, `A` and `B` are set.
It must be possible to move a context object in memory (except during the execution of a library function that takes this context as an argument). (This is necessary, for example, to support applications that populate a context on the stack of an inner function and then copy the context upwards through the call chain, or applications written in a language with automatic memory management that can move objects on the heap.) That is, call sequences like the following must work:
```
mbedtls_xxx_context ctx1, ctx2;
mbedtls_xxx_init(&ctx1);
mbedtls_xxx_setup(&ctx1, …);
ctx2 = ctx1;
memset(&ctx1, 0, sizeof(ctx1));
mbedtls_xxx_do_stuff(&ctx2, …);
mbedtls_xxx_free(&ctx2);
```
In practice, this means that a pointer to a context or to a part of a context does not remain valid across function calls. Alternative implementations do not need to support copying of contexts: contexts can only be cloned through explicit `clone()` functions.
## Function alternative implementations
In some cases, it is possible to replace a single function or a small set of functions instead of [providing an alternative implementation of the whole module](#module-alternative-implementations).
### Alternative implementations of cryptographic functions
Options to replace individual functions of cryptographic modules generally have a name obtained by upper-casing the function name and appending `_ALT`. If the function name contains `_internal`, `_ext` or `_ret`, this is removed in the `_ALT` symbol. When the corresponding option is enabled, the built-in implementation of the function will not be compiled, and you must provide an alternative implementation at link time.
For example, enable `MBEDTLS_AES_ENCRYPT_ALT` at compile time and provide your own implementation of `mbedtls_aes_encrypt()` to provide an accelerated implementation of AES encryption that is compatible with the built-in key schedule. If you wish to implement key schedule differently, you can also enable `MBEDTLS_AES_SETKEY_ENC_ALT` and implement `mbedtls_aes_setkey_enc()`.
Another example: enable `MBEDTLS_SHA256_PROCESS_ALT` and implement `mbedtls_internal_sha256_process()` to provide an accelerated implementation of SHA-256 and SHA-224.
Note that since alternative implementations of individual functions cooperate with the built-in implementation of other functions, you must use the same layout for context objects as the built-in implementation. If you want to use different context types, you need to [provide an alternative implementation of the whole module](#module-alternative-implementations).
### Alternative implementations of platform functions
Several platform functions can be reconfigured dynamically by following the process described here. To reconfigure how Mbed TLS calls the standard library function `xxx()`:
* Define the symbol `MBEDTLS_PLATFORM_XXX_ALT` at compile time.
* During the initialization of your application, set the global variable `mbedtls_xxx` to an alternative implementation of `xxx()`.
For example, to provide a custom `printf` function at run time, enable `MBEDTLS_PLATFORM_PRINTF_ALT` at compile time and assign to `mbedtls_printf` during the initialization of your application.
Merely enabling `MBEDTLS_PLATFORM_XXX_ALT` does not change the behavior: by default, `mbedtls_xxx` points to the standard function `xxx`.
Note that there are variations on the naming pattern. For example, some configurable functions are activated in pairs, such as `mbedtls_calloc` and `mbedtls_free` via `MBEDTLS_PLATFORM_MEMORY`. Consult the documentation of individual configuration options and of the platform module for details.

View File

@@ -0,0 +1,467 @@
Mbed TLS storage specification
=================================
This document specifies how Mbed TLS uses storage.
Key storage was originally introduced in a product called Mbed Crypto, which was re-distributed via Mbed TLS and has since been merged into Mbed TLS.
This document contains historical information both from before and after this merge.
Mbed Crypto may be upgraded on an existing device with the storage preserved. Therefore:
1. Any change may break existing installations and may require an upgrade path.
1. This document retains historical information about all past released versions. Do not remove information from this document unless it has always been incorrect or it is about a version that you are sure was never released.
Mbed Crypto 0.1.0
-----------------
Tags: mbedcrypto-0.1.0b, mbedcrypto-0.1.0b2
Released in November 2018. <br>
Integrated in Mbed OS 5.11.
Supported backends:
* [PSA ITS](#file-namespace-on-its-for-0.1.0)
* [C stdio](#file-namespace-on-stdio-for-0.1.0)
Supported features:
* [Persistent transparent keys](#key-file-format-for-0.1.0) designated by a [slot number](#key-names-for-0.1.0).
* [Nonvolatile random seed](#nonvolatile-random-seed-file-format-for-0.1.0) on ITS only.
This is a beta release, and we do not promise backward compatibility, with one exception:
> On Mbed OS, if a device has a nonvolatile random seed file produced with Mbed OS 5.11.x and is upgraded to a later version of Mbed OS, the nonvolatile random seed file is preserved or upgraded.
We do not make any promises regarding key storage, or regarding the nonvolatile random seed file on other platforms.
### Key names for 0.1.0
Information about each key is stored in a dedicated file whose name is constructed from the key identifier. The way in which the file name is constructed depends on the storage backend. The content of the file is described [below](#key-file-format-for-0.1.0).
The valid values for a key identifier are the range from 1 to 0xfffeffff. This limitation on the range is not documented in user-facing documentation: according to the user-facing documentation, arbitrary 32-bit values are valid.
The code uses the following constant in an internal header (note that despite the name, this value is actually one plus the maximum permitted value):
#define PSA_MAX_PERSISTENT_KEY_IDENTIFIER 0xffff0000
There is a shared namespace for all callers.
### Key file format for 0.1.0
All integers are encoded in little-endian order in 8-bit bytes.
The layout of a key file is:
* magic (8 bytes): `"PSA\0KEY\0"`
* version (4 bytes): 0
* type (4 bytes): `psa_key_type_t` value
* policy usage flags (4 bytes): `psa_key_usage_t` value
* policy usage algorithm (4 bytes): `psa_algorithm_t` value
* key material length (4 bytes)
* key material: output of `psa_export_key`
* Any trailing data is rejected on load.
### Nonvolatile random seed file format for 0.1.0
The nonvolatile random seed file contains a seed for the random generator. If present, it is rewritten at each boot as part of the random generator initialization.
The file format is just the seed as a byte string with no metadata or encoding of any kind.
### File namespace on ITS for 0.1.0
Assumption: ITS provides a 32-bit file identifier namespace. The Crypto service can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
* File 0: unused.
* Files 1 through 0xfffeffff: [content](#key-file-format-for-0.1.0) of the [key whose identifier is the file identifier](#key-names-for-0.1.0).
* File 0xffffff52 (`PSA_CRYPTO_ITS_RANDOM_SEED_UID`): [nonvolatile random seed](#nonvolatile-random-seed-file-format-for-0.1.0).
* Files 0xffff0000 through 0xffffff51, 0xffffff53 through 0xffffffff: unused.
### File namespace on stdio for 0.1.0
Assumption: C stdio, allowing names containing lowercase letters, digits and underscores, of length up to 23.
An undocumented build-time configuration value `CRYPTO_STORAGE_FILE_LOCATION` allows storing the key files in a directory other than the current directory. This value is simply prepended to the file name (so it must end with a directory separator to put the keys in a different directory).
* `CRYPTO_STORAGE_FILE_LOCATION "psa_key_slot_0"`: used as a temporary file. Must be writable. May be overwritten or deleted if present.
* `sprintf(CRYPTO_STORAGE_FILE_LOCATION "psa_key_slot_%lu", key_id)` [content](#key-file-format-for-0.1.0) of the [key whose identifier](#key-names-for-0.1.0) is `key_id`.
* Other files: unused.
Mbed Crypto 1.0.0
-----------------
Tags: mbedcrypto-1.0.0d4, mbedcrypto-1.0.0
Released in February 2019. <br>
Integrated in Mbed OS 5.12.
Supported integrations:
* [PSA platform](#file-namespace-on-a-psa-platform-for-1.0.0)
* [library using PSA ITS](#file-namespace-on-its-as-a-library-for-1.0.0)
* [library using C stdio](#file-namespace-on-stdio-for-1.0.0)
Supported features:
* [Persistent transparent keys](#key-file-format-for-1.0.0) designated by a [key identifier and owner](#key-names-for-1.0.0).
* [Nonvolatile random seed](#nonvolatile-random-seed-file-format-for-1.0.0) on ITS only.
Backward compatibility commitments: TBD
### Key names for 1.0.0
Information about each key is stored in a dedicated file designated by the key identifier. In integrations where there is no concept of key owner (in particular, in library integrations), the key identifier is exactly the key identifier as defined in the PSA Cryptography API specification (`psa_key_id_t`). In integrations where there is a concept of key owner (integration into a service for example), the key identifier is made of an owner identifier (its semantics and type are integration specific) and of the key identifier (`psa_key_id_t`) from the key owner point of view.
The way in which the file name is constructed from the key identifier depends on the storage backend. The content of the file is described [below](#key-file-format-for-1.0.0).
* Library integration: the key file name is just the key identifier as defined in the PSA crypto specification. This is a 32-bit value.
* PSA service integration: the key file name is `(uint64_t)owner_uid << 32 | key_id` where `key_id` is the key identifier from the owner point of view and `owner_uid` (of type `int32_t`) is the calling partition identifier provided to the server by the partition manager. This is a 64-bit value.
### Key file format for 1.0.0
The layout is identical to [0.1.0](#key-file-format-for-0.1.0) so far. However note that the encoding of key types, algorithms and key material has changed, therefore the storage format is not compatible (despite using the same value in the version field so far).
### Nonvolatile random seed file format for 1.0.0
The nonvolatile random seed file contains a seed for the random generator. If present, it is rewritten at each boot as part of the random generator initialization.
The file format is just the seed as a byte string with no metadata or encoding of any kind.
This is unchanged since [the feature was introduced in Mbed Crypto 0.1.0](#nonvolatile-random-seed-file-format-for-0.1.0).
### File namespace on a PSA platform for 1.0.0
Assumption: ITS provides a 64-bit file identifier namespace. The Crypto service can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
Assumption: the owner identifier is a nonzero value of type `int32_t`.
* Files 0 through 0xffffff51, 0xffffff53 through 0xffffffff: unused, reserved for internal use of the crypto library or crypto service.
* File 0xffffff52 (`PSA_CRYPTO_ITS_RANDOM_SEED_UID`): [nonvolatile random seed](#nonvolatile-random-seed-file-format-for-0.1.0).
* Files 0x100000000 through 0xffffffffffff: [content](#key-file-format-for-1.0.0) of the [key whose identifier is the file identifier](#key-names-for-1.0.0). The upper 32 bits determine the owner.
### File namespace on ITS as a library for 1.0.0
Assumption: ITS provides a 64-bit file identifier namespace. The entity using the crypto library can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
This is a library integration, so there is no owner. The key file identifier is identical to the key identifier.
* File 0: unused.
* Files 1 through 0xfffeffff: [content](#key-file-format-for-1.0.0) of the [key whose identifier is the file identifier](#key-names-for-1.0.0).
* File 0xffffff52 (`PSA_CRYPTO_ITS_RANDOM_SEED_UID`): [nonvolatile random seed](#nonvolatile-random-seed-file-format-for-1.0.0).
* Files 0xffff0000 through 0xffffff51, 0xffffff53 through 0xffffffff, 0x100000000 through 0xffffffffffffffff: unused.
### File namespace on stdio for 1.0.0
This is a library integration, so there is no owner. The key file identifier is identical to the key identifier.
[Identical to 0.1.0](#file-namespace-on-stdio-for-0.1.0).
### Upgrade from 0.1.0 to 1.0.0.
* Delete files 1 through 0xfffeffff, which contain keys in a format that is no longer supported.
### Suggested changes to make before 1.0.0
The library integration and the PSA platform integration use different sets of file names. This is annoyingly non-uniform. For example, if we want to store non-key files, we have room in different ranges (0 through 0xffffffff on a PSA platform, 0xffff0000 through 0xffffffffffffffff in a library integration).
It would simplify things to always have a 32-bit owner, with a nonzero value, and thus reserve the range 00xffffffff for internal library use.
Mbed Crypto 1.1.0
-----------------
Tags: mbedcrypto-1.1.0
Released in early June 2019. <br>
Integrated in Mbed OS 5.13.
Changes since [1.0.0](#mbed-crypto-1.0.0):
* The stdio backend for storage has been replaced by an implementation of [PSA ITS over stdio](#file-namespace-on-stdio-for-1.1.0).
* [Some changes in the key file format](#key-file-format-for-1.1.0).
### File namespace on stdio for 1.1.0
Assumption: C stdio, allowing names containing lowercase letters, digits and underscores, of length up to 23.
An undocumented build-time configuration value `PSA_ITS_STORAGE_PREFIX` allows storing the key files in a directory other than the current directory. This value is simply prepended to the file name (so it must end with a directory separator to put the keys in a different directory).
* `PSA_ITS_STORAGE_PREFIX "tempfile.psa_its"`: used as a temporary file. Must be writable. May be overwritten or deleted if present.
* `sprintf(PSA_ITS_STORAGE_PREFIX "%016llx.psa_its", key_id)`: a key or non-key file. The `key_id` in the name is the 64-bit file identifier, which is the [key identifier](#key-names-for-mbed-tls-2.25.0) for a key file or some reserved identifier for a non-key file (currently: only the [nonvolatile random seed](#nonvolatile-random-seed-file-format-for-1.0.0)). The contents of the file are:
* Magic header (8 bytes): `"PSA\0ITS\0"`
* File contents.
### Key file format for 1.1.0
The key file format is identical to [1.0.0](#key-file-format-for-1.0.0), except for the following changes:
* A new policy field, marked as [NEW:1.1.0] below.
* The encoding of key types, algorithms and key material has changed, therefore the storage format is not compatible (despite using the same value in the version field so far).
A self-contained description of the file layout follows.
All integers are encoded in little-endian order in 8-bit bytes.
The layout of a key file is:
* magic (8 bytes): `"PSA\0KEY\0"`
* version (4 bytes): 0
* type (4 bytes): `psa_key_type_t` value
* policy usage flags (4 bytes): `psa_key_usage_t` value
* policy usage algorithm (4 bytes): `psa_algorithm_t` value
* policy enrollment algorithm (4 bytes): `psa_algorithm_t` value [NEW:1.1.0]
* key material length (4 bytes)
* key material: output of `psa_export_key`
* Any trailing data is rejected on load.
Mbed Crypto TBD
---------------
Tags: TBD
Released in TBD 2019. <br>
Integrated in Mbed OS TBD.
### Changes introduced in TBD
* The layout of a key file now has a lifetime field before the type field.
* Key files can store references to keys in a secure element. In such key files, the key material contains the slot number.
### File namespace on a PSA platform on TBD
Assumption: ITS provides a 64-bit file identifier namespace. The Crypto service can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
Assumption: the owner identifier is a nonzero value of type `int32_t`.
* Files 0 through 0xfffeffff: unused.
* Files 0xffff0000 through 0xffffffff: reserved for internal use of the crypto library or crypto service. See [non-key files](#non-key-files-on-tbd).
* Files 0x100000000 through 0xffffffffffff: [content](#key-file-format-for-1.0.0) of the [key whose identifier is the file identifier](#key-names-for-1.0.0). The upper 32 bits determine the owner.
### File namespace on ITS as a library on TBD
Assumption: ITS provides a 64-bit file identifier namespace. The entity using the crypto library can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
This is a library integration, so there is no owner. The key file identifier is identical to the key identifier.
* File 0: unused.
* Files 1 through 0xfffeffff: [content](#key-file-format-for-1.0.0) of the [key whose identifier is the file identifier](#key-names-for-1.0.0).
* Files 0xffff0000 through 0xffffffff: reserved for internal use of the crypto library or crypto service. See [non-key files](#non-key-files-on-tbd).
* Files 0x100000000 through 0xffffffffffffffff: unused.
### Non-key files on TBD
File identifiers in the range 0xffff0000 through 0xffffffff are reserved for internal use in Mbed Crypto.
* Files 0xfffffe02 through 0xfffffeff (`PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE + lifetime`): secure element driver storage. The content of the file is the secure element driver's persistent data.
* File 0xffffff52 (`PSA_CRYPTO_ITS_RANDOM_SEED_UID`): [nonvolatile random seed](#nonvolatile-random-seed-file-format-for-1.0.0).
* File 0xffffff54 (`PSA_CRYPTO_ITS_TRANSACTION_UID`): [transaction file](#transaction-file-format-for-tbd).
* Other files are unused and reserved for future use.
### Key file format for TBD
All integers are encoded in little-endian order in 8-bit bytes except where otherwise indicated.
The layout of a key file is:
* magic (8 bytes): `"PSA\0KEY\0"`.
* version (4 bytes): 0.
* lifetime (4 bytes): `psa_key_lifetime_t` value.
* type (4 bytes): `psa_key_type_t` value.
* policy usage flags (4 bytes): `psa_key_usage_t` value.
* policy usage algorithm (4 bytes): `psa_algorithm_t` value.
* policy enrollment algorithm (4 bytes): `psa_algorithm_t` value.
* key material length (4 bytes).
* key material:
* For a transparent key: output of `psa_export_key`.
* For an opaque key (unified driver interface): driver-specific opaque key blob.
* For an opaque key (key in a secure element): slot number (8 bytes), in platform endianness.
* Any trailing data is rejected on load.
### Transaction file format for TBD
The transaction file contains data about an ongoing action that cannot be completed atomically. It exists only if there is an ongoing transaction.
All integers are encoded in platform endianness.
All currently existing transactions concern a key in a secure element.
The layout of a transaction file is:
* type (2 bytes): the [transaction type](#transaction-types-on-tbd).
* unused (2 bytes)
* lifetime (4 bytes): `psa_key_lifetime_t` value that corresponds to a key in a secure element.
* slot number (8 bytes): `psa_key_slot_number_t` value. This is the unique designation of the key for the secure element driver.
* key identifier (4 bytes in a library integration, 8 bytes on a PSA platform): the internal representation of the key identifier. On a PSA platform, this encodes the key owner in the same way as [in file identifiers for key files](#file-namespace-on-a-psa-platform-on-tbd)).
#### Transaction types on TBD
* 0x0001: key creation. The following locations may or may not contain data about the key that is being created:
* The slot in the secure element designated by the slot number.
* The file containing the key metadata designated by the key identifier.
* The driver persistent data.
* 0x0002: key destruction. The following locations may or may not still contain data about the key that is being destroyed:
* The slot in the secure element designated by the slot number.
* The file containing the key metadata designated by the key identifier.
* The driver persistent data.
Mbed Crypto TBD
---------------
Tags: TBD
Released in TBD 2020. <br>
Integrated in Mbed OS TBD.
### Changes introduced in TBD
* The type field has been split into a type and a bits field of 2 bytes each.
### Key file format for TBD
All integers are encoded in little-endian order in 8-bit bytes except where otherwise indicated.
The layout of a key file is:
* magic (8 bytes): `"PSA\0KEY\0"`.
* version (4 bytes): 0.
* lifetime (4 bytes): `psa_key_lifetime_t` value.
* type (2 bytes): `psa_key_type_t` value.
* bits (2 bytes): `psa_key_bits_t` value.
* policy usage flags (4 bytes): `psa_key_usage_t` value.
* policy usage algorithm (4 bytes): `psa_algorithm_t` value.
* policy enrollment algorithm (4 bytes): `psa_algorithm_t` value.
* key material length (4 bytes).
* key material:
* For a transparent key: output of `psa_export_key`.
* For an opaque key (unified driver interface): driver-specific opaque key blob.
* For an opaque key (key in a secure element): slot number (8 bytes), in platform endianness.
* Any trailing data is rejected on load.
Mbed TLS 2.25.0
---------------
Tags: `mbedtls-2.25.0`, `mbedtls-2.26.0`, `mbedtls-2.27.0`, `mbedtls-2.28.0`, `mbedtls-3.0.0`, `mbedtls-3.1.0`
First released in December 2020.
Note: this is the first version that is officially supported. The version number is still 0.
Backward compatibility commitments: we promise backward compatibility for stored keys when Mbed TLS is upgraded from x to y if x >= 2.25 and y < 4. See [`BRANCHES.md`](../../BRANCHES.md) for more details.
Supported integrations:
* [PSA platform](#file-namespace-on-a-psa-platform-on-mbed-tls-2.25.0)
* [library using PSA ITS](#file-namespace-on-its-as-a-library-on-mbed-tls-2.25.0)
* [library using C stdio](#file-namespace-on-stdio-for-mbed-tls-2.25.0)
Supported features:
* [Persistent keys](#key-file-format-for-mbed-tls-2.25.0) designated by a [key identifier and owner](#key-names-for-mbed-tls-2.25.0). Keys can be:
* Transparent, stored in the export format.
* Opaque, using the PSA driver interface with statically registered drivers. The driver determines the content of the opaque key blob.
* Opaque, using the deprecated secure element interface with dynamically registered drivers (`MBEDTLS_PSA_CRYPTO_SE_C`). The driver picks a slot number which is stored in the place of the key material.
* [Nonvolatile random seed](#nonvolatile-random-seed-file-format-for-mbed-tls-2.25.0) on ITS only.
### Changes introduced in Mbed TLS 2.25.0
* The numerical encodings of `psa_key_type_t`, `psa_key_usage_t` and `psa_algorithm_t` have changed.
### File namespace on a PSA platform on Mbed TLS 2.25.0
Assumption: ITS provides a 64-bit file identifier namespace. The Crypto service can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
Assumption: the owner identifier is a nonzero value of type `int32_t`.
* Files 0 through 0xfffeffff: unused.
* Files 0xffff0000 through 0xffffffff: reserved for internal use of the crypto library or crypto service. See [non-key files](#non-key-files-on-mbed-tls-2.25.0).
* Files 0x100000000 through 0xffffffffffff: [content](#key-file-format-for-mbed-tls-2.25.0) of the [key whose identifier is the file identifier](#key-names-for-mbed-tls-2.25.0). The upper 32 bits determine the owner.
### File namespace on ITS as a library on Mbed TLS 2.25.0
Assumption: ITS provides a 64-bit file identifier namespace. The entity using the crypto library can use arbitrary file identifiers and no other part of the system accesses the same file identifier namespace.
This is a library integration, so there is no owner. The key file identifier is identical to the key identifier.
* File 0: unused.
* Files 1 through 0xfffeffff: [content](#key-file-format-for-mbed-tls-2.25.0) of the [key whose identifier is the file identifier](#key-names-for-mbed-tls-2.25.0).
* Files 0xffff0000 through 0xffffffff: reserved for internal use of the crypto library or crypto service. See [non-key files](#non-key-files-on-mbed-tls-2.25.0).
* Files 0x100000000 through 0xffffffffffffffff: unused.
### File namespace on stdio for Mbed TLS 2.25.0
Assumption: C stdio, allowing names containing lowercase letters, digits and underscores, of length up to 23.
An undocumented build-time configuration value `PSA_ITS_STORAGE_PREFIX` allows storing the key files in a directory other than the current directory. This value is simply prepended to the file name (so it must end with a directory separator to put the keys in a different directory).
* `PSA_ITS_STORAGE_PREFIX "tempfile.psa_its"`: used as a temporary file. Must be writable. May be overwritten or deleted if present.
* `sprintf(PSA_ITS_STORAGE_PREFIX "%016llx.psa_its", key_id)`: a key or non-key file. The `key_id` in the name is the 64-bit file identifier, which is the [key identifier](#key-names-for-mbed-tls-2.25.0) for a key file or some reserved identifier for a [non-key file](#non-key-files-on-mbed-tls-2.25.0). The contents of the file are:
* Magic header (8 bytes): `"PSA\0ITS\0"`
* File contents.
### Key names for Mbed TLS 2.25.0
Information about each key is stored in a dedicated file designated by the key identifier. In integrations where there is no concept of key owner (in particular, in library integrations), the key identifier is exactly the key identifier as defined in the PSA Cryptography API specification (`psa_key_id_t`). In integrations where there is a concept of key owner (integration into a service for example), the key identifier is made of an owner identifier (its semantics and type are integration specific) and of the key identifier (`psa_key_id_t`) from the key owner point of view.
The way in which the file name is constructed from the key identifier depends on the storage backend. The content of the file is described [below](#key-file-format-for-mbed-tls-2.25.0).
* Library integration: the key file name is just the key identifier as defined in the PSA crypto specification. This is a 32-bit value which must be in the range 0x00000001..0x3fffffff (`PSA_KEY_ID_USER_MIN`..`PSA_KEY_ID_USER_MAX`).
* PSA service integration: the key file name is `(uint64_t)owner_uid << 32 | key_id` where `key_id` is the key identifier from the owner point of view and `owner_uid` (of type `int32_t`) is the calling partition identifier provided to the server by the partition manager. This is a 64-bit value.
### Key file format for Mbed TLS 2.25.0
All integers are encoded in little-endian order in 8-bit bytes except where otherwise indicated.
The layout of a key file is:
* magic (8 bytes): `"PSA\0KEY\0"`.
* version (4 bytes): 0.
* lifetime (4 bytes): `psa_key_lifetime_t` value.
* type (2 bytes): `psa_key_type_t` value.
* bits (2 bytes): `psa_key_bits_t` value.
* policy usage flags (4 bytes): `psa_key_usage_t` value.
* policy usage algorithm (4 bytes): `psa_algorithm_t` value.
* policy enrollment algorithm (4 bytes): `psa_algorithm_t` value.
* key material length (4 bytes).
* key material:
* For a transparent key: output of `psa_export_key`.
* For an opaque key (unified driver interface): driver-specific opaque key blob.
* For an opaque key (key in a dynamic secure element): slot number (8 bytes), in platform endianness.
* Any trailing data is rejected on load.
### Non-key files on Mbed TLS 2.25.0
File identifiers that are outside the range of persistent key identifiers are reserved for internal use by the library. The only identifiers currently in use have the owner id (top 32 bits) set to 0.
* Files 0xfffffe02 through 0xfffffeff (`PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE + lifetime`): dynamic secure element driver storage. The content of the file is the secure element driver's persistent data.
* File 0xffffff52 (`PSA_CRYPTO_ITS_RANDOM_SEED_UID`): [nonvolatile random seed](#nonvolatile-random-seed-file-format-for-mbed-tls-2.25.0).
* File 0xffffff54 (`PSA_CRYPTO_ITS_TRANSACTION_UID`): [transaction file](#transaction-file-format-for-mbed-tls-2.25.0).
* Other files are unused and reserved for future use.
### Nonvolatile random seed file format for Mbed TLS 2.25.0
[Identical to Mbed Crypto 0.1.0](#nonvolatile-random-seed-file-format-for-0.1.0).
### Transaction file format for Mbed TLS 2.25.0
The transaction file contains data about an ongoing action that cannot be completed atomically. It exists only if there is an ongoing transaction.
All integers are encoded in platform endianness.
All currently existing transactions concern a key in a dynamic secure element.
The layout of a transaction file is:
* type (2 bytes): the [transaction type](#transaction-types-on-mbed-tls-2.25.0).
* unused (2 bytes)
* lifetime (4 bytes): `psa_key_lifetime_t` value that corresponds to a key in a secure element.
* slot number (8 bytes): `psa_key_slot_number_t` value. This is the unique designation of the key for the secure element driver.
* key identifier (4 bytes in a library integration, 8 bytes on a PSA platform): the internal representation of the key identifier. On a PSA platform, this encodes the key owner in the same way as [in file identifiers for key files](#file-namespace-on-a-psa-platform-on-mbed-tls-2.25.0)).
#### Transaction types on Mbed TLS 2.25.0
* 0x0001: key creation. The following locations may or may not contain data about the key that is being created:
* The slot in the secure element designated by the slot number.
* The file containing the key metadata designated by the key identifier.
* The driver persistent data.
* 0x0002: key destruction. The following locations may or may not still contain data about the key that is being destroyed:
* The slot in the secure element designated by the slot number.
* The file containing the key metadata designated by the key identifier.
* The driver persistent data.

View File

@@ -0,0 +1,175 @@
PSA Cryptography API implementation and PSA driver interface
===========================================================
## Introduction
The [PSA Cryptography API specification](https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface) defines an interface to cryptographic operations for which the Mbed TLS library provides a reference implementation. The PSA Cryptography API specification is complemented by the PSA driver interface specification which defines an interface for cryptoprocessor drivers.
This document describes the high level organization of the Mbed TLS PSA Cryptography API implementation which is tightly related to the PSA driver interface.
## High level organization of the Mbed TLS PSA Cryptography API implementation
In one sentence, the Mbed TLS PSA Cryptography API implementation is made of a core and PSA drivers as defined in the PSA driver interface. The key point is that software cryptographic operations are organized as PSA drivers: they interact with the core through the PSA driver interface.
### Rationale
* Addressing software and hardware cryptographic implementations through the same C interface reduces the core code size and its call graph complexity. The core and its dispatching to software and hardware implementations are consequently easier to test and validate.
* The organization of the software cryptographic implementations in drivers promotes modularization of those implementations.
* As hardware capabilities, software cryptographic functionalities can be described by a JSON driver description file as defined in the PSA driver interface.
* Along with JSON driver description files, the PSA driver specification defines the deliverables for a driver to be included into the Mbed TLS PSA Cryptography implementation. This provides a natural framework to integrate third party or alternative software implementations of cryptographic operations.
## The Mbed TLS PSA Cryptography API implementation core
The core implements all the APIs as defined in the PSA Cryptography API specification but does not perform on its own any cryptographic operation. The core relies on PSA drivers to actually
perform the cryptographic operations. The core is responsible for:
* the key store.
* checking PSA API arguments and translating them into valid arguments for the necessary calls to the PSA driver interface.
* dispatching the cryptographic operations to the appropriate PSA drivers.
The sketch of an Mbed TLS PSA cryptographic API implementation is thus:
```C
psa_status_t psa_api( ... )
{
psa_status_t status;
/* Pre driver interface call processing: validation of arguments, building
* of arguments for the call to the driver interface, ... */
...
/* Call to the driver interface */
status = psa_driver_wrapper_<entry_point>( ... );
if( status != PSA_SUCCESS )
return( status );
/* Post driver interface call processing: validation of the values returned
* by the driver, finalization of the values to return to the caller,
* clean-up in case of error ... */
}
```
The code of most PSA APIs is expected to match precisely the above layout. However, it is likely that the code structure of some APIs will be more complicated with several calls to the driver interface, mainly to encompass a larger variety of hardware designs. For example, to encompass hardware accelerators that are capable of verifying a MAC and those that are only capable of computing a MAC, the psa_mac_verify() API could call first psa_driver_wrapper_mac_verify() and then fallback to psa_driver_wrapper_mac_compute().
The implementations of `psa_driver_wrapper_<entry_point>` functions are generated by the build system based on the JSON driver description files of the various PSA drivers making up the Mbed TLS PSA Cryptography API implementation. The implementations are splited into two parts. The static ones are generated in a psa_crypto_driver_wrappers.h header file, the non-static ones are generated in a psa_crypto_driver_wrappers_no_static.c C file and the function prototypes declared in a psa_crypto_driver_wrappers_no_static.h header file.
The psa_driver_wrapper_<entry_point>() functions dispatch cryptographic operations to accelerator drivers, secure element drivers as well as to the software implementations of cryptographic operations.
Note that the implementation allows to build the library with only a C compiler by shipping a generated file corresponding to a pure software implementation. The driver entry points and their code in this generated file are guarded by pre-processor directives based on PSA_WANT_xyz macros (see [Conditional inclusion of cryptographic mechanism through the PSA API in Mbed TLS](psa-conditional-inclusion-c.html). That way, it is possible to compile and include in the library only the desired cryptographic operations.
### Key creation
Key creation implementation in Mbed TLS PSA core is articulated around three internal functions: psa_start_key_creation(), psa_finish_key_creation() and psa_fail_key_creation(). Implementations of key creation PSA APIs, namely psa_import_key(), psa_generate_key(), psa_key_derivation_output_key() and psa_copy_key() go by the following sequence:
1. Check the input parameters.
2. Call psa_start_key_creation() that allocates a key slot, prepares it with the specified key attributes, and in case of a volatile key assign it a volatile key identifier.
3. Generate or copy the key material into the key slot. This entails the allocation of the buffer to store the key material.
4. Call psa_finish_key_creation() that mostly saves persistent keys into persistent storage.
In case of any error occurring at step 3 or 4, psa_fail_key_creation() is called. It wipes and cleans the slot especially the key material: reset to zero of the RAM memory that contained the key material, free the allocated buffer.
## Mbed TLS PSA Cryptography API implementation drivers
A driver of the Mbed TLS PSA Cryptography API implementation (Mbed TLS PSA driver in the following) is a driver in the sense that it is compliant with the PSA driver interface specification. But it is not an actual driver that drives some hardware. It implements cryptographic operations purely in software.
An Mbed TLS PSA driver C file is named psa_crypto_<driver_name>.c and its associated header file psa_crypto_<driver_name>.h. The functions implementing a driver entry point as defined in the PSA driver interface specification are named as mbedtls_psa_<driver name>_<entry point>(). As an example, the psa_crypto_rsa.c and psa_crypto_rsa.h are the files containing the Mbed TLS PSA driver implementing RSA cryptographic operations. This RSA driver implements among other entry points the "import_key" entry point. The function implementing this entry point is named mbedtls_psa_rsa_import_key().
## How to implement a new cryptographic mechanism
Summary of files to modify when adding a new algorithm or key type:
* [ ] PSA Crypto API draft, if not already done — [PSA standardization](#psa-standardization)
* [ ] `include/psa/crypto_values.h` or `include/psa/crypto_extra.h` — [New functions and macros](#new-functions-and-macros)
* [ ] `include/psa/crypto_config.h`, `tests/include/test/drivers/crypto_config_test_driver_extension.h` — [Preprocessor symbols](#preprocessor-symbols)
* Occasionally `library/check_crypto_config.h` — [Preprocessor symbols](#preprocessor-symbols)
* [ ] `include/mbedtls/config_psa.h` — [Preprocessor symbols](#preprocessor-symbols)
* [ ] `library/psa_crypto.c`, `library/psa_crypto_*.[hc]` — [Implementation of the mechanisms](#implementation-of-the-mechanisms)
* [ ] `include/psa/crypto_builtin_*.h` — [Translucent data structures](#translucent-data-structures)
* [ ] `tests/suites/test_suite_psa_crypto_metadata.data` — [New functions and macros](#new-functions-and-macros)
* (If adding `PSA_IS_xxx`) `tests/suites/test_suite_psa_crypto_metadata.function` — [New functions and macros](#new-functions-and-macros)
* [ ] `tests/suites/test_suite_psa_crypto*.data`, `tests/suites/test_suite_psa_crypto*.function` — [Unit tests](#unit-tests)
* [ ] `scripts/mbedtls_dev/crypto_knowledge.py`, `scripts/mbedtls_dev/asymmetric_key_data.py` — [Unit tests](#unit-tests)
* [ ] `ChangeLog.d/*.txt` — changelog entry
Summary of files to modify when adding new API functions:
* [ ] `include/psa/crypto.h` and `include/psa/crypto_sizes.h`, or `include/psa/crypto_extra.h` — [New functions and macros](#new-functions-and-macros)
* [ ] `library/psa_crypto.c`, `scripts/data_files/driver_templates/*.jinja` — [Implementation of the mechanisms](#implementation-of-the-mechanisms)
* [ ] If adding stateful functions: `include/psa/crypto_struct.h`, `include/psa/crypto_builtin_*.h`, `include/psa/crypto_driver_contexts_*.h` — [Translucent data structures](#translucent-data-structures)
* [ ] `tests/suites/test_suite_psa_crypto.data`, `tests/suites/test_suite_psa_crypto.function`, `tests/suites/test_suite_psa_crypto_driver_wrappers.*` — [Unit tests](#unit-tests)
Note that this is just a basic guide. In some cases, you won't need to change all the files listed here. In some cases, you may need to change other files.
### PSA standardization
Typically, if there's enough demand for a cryptographic mechanism in Mbed TLS, there's enough demand for it to be part of the official PSA Cryptography specification. Therefore the first step before implementing a new mechanism should be to approach the PSA Cryptography working group in Arm for standardization.
At the time of writing, all cryptographic mechanisms that are accessible through `psa_xxx` APIs in in Mbed TLS are current or upcoming PSA standards. Mbed TLS implements some extensions to the PSA API that offer extra integration customization or extra key policies.
Mbed TLS routinely implements cryptographic mechanisms that are not yet part of a published PSA standard, but that are scheduled to be part of a future version of the standard. The Mbed TLS implementation validates the feasibility of the upcoming PSA standard. The PSA Cryptography working group and the Mbed TLS development team communicate during the elaboration of the new interfaces.
### New functions and macros
If a mechanism requires new functions, they should follow the design guidelines in the PSA Cryptography API specification.
Functions that are part of the current or upcoming API are declared in `include/psa/crypto.h`, apart from structure accessors defined in `include/psa/crypto_struct.h`. Functions that have output buffers have associated sufficient-output-size macros in `include/psa/crypto_sizes.h`.
Constants (algorithm identifiers, key type identifiers, etc.) and associated destructor macros (e.g. `PSA_IS_xxx()`) are defined in `include/psa/crypto_values.h`.
Functions and macros that are not intended for standardization, or that are at a stage where the draft standard might still evolve significantly, are declared in `include/psa/crypto_extra.h`.
The PSA Cryptography API specification defines both names and values for certain kinds of constants: algorithms (`PSA_ALG_xxx`), key types (`PSA_KEY_TYPE_xxx`), ECC curve families (`PSA_ECC_FAMILY_xxx`), DH group families (`PSA_DH_FAMILY_xxx`). If Mbed TLS defines an algorithm or a key type that is not part of a current or upcoming PSA standard, pick a value with the `VENDOR` flag set. If Mbed TLS defines an ECC curve or DH group family that is not part of a current or upcoming PSA standard, define a vendor key type and use the family identifier only with this vendor key type.
New constants must have a test case in `tests/suites/test_suite_psa_crypto_metadata.data` that verifies that `PSA_IS_xxx` macros behave properly with the new constant. New `PSA_IS_xxx` macros must be declared in `tests/suites/test_suite_psa_crypto_metadata.function`.
### Preprocessor symbols
Each cryptographic mechanism is optional and can be selected by the application at build time. For each feature `PSA_ttt_xxx`:
* The feature is available to applications when the preprocessor symbol `PSA_WANT_ttt_xxx` is defined. These symbols are set:
* If `MBEDTLS_PSA_CRYPTO_CONFIG` is disabled: based on the available mechanisms in Mbed TLS, deduced from `mbedtls/mbedtls_config.h` by code in `include/mbedtls/config_psa.h`.
* if `MBEDTLS_PSA_CRYPTO_CONFIG` is enabled: in the application configuration file `include/psa/crypto_config.h` (or `MBEDTLS_PSA_CRYPTO_CONFIG_FILE`, plus `MBEDTLS_PSA_CRYPTO_USER_CONFIG_FILE`), with code in `include/mbedtls/config_psa.h` deducing the necessary underlying `MBEDTLS_xxx` symbols.
* For transparent keys (keys that are not in a secure element), the feature is implemented by Mbed TLS if `MBEDTLS_PSA_BUILTIN_ttt_xxx` is defined, and by an accelerator driver if `MBEDTLS_PSA_ACCEL_ttt_xxx` is defined. `MBEDTLS_PSA_BUILTIN_ttt_xxx` constants are set in `include/mbedtls/config_psa.h` based on the application requests `PSA_WANT_ttt_xxx` and the accelerator driver declarations `MBEDTLS_PSA_ACCEL_ttt_xxx`.
* For the testing of the driver dispatch code, `tests/include/test/drivers/crypto_config_test_driver_extension.h` sets additional `MBEDTLS_PSA_ACCEL_xxx` symbols.
For more details, see *[Conditional inclusion of cryptographic mechanism through the PSA API in Mbed TLS](../proposed/psa-conditional-inclusion-c.html)*.
Some mechanisms require other mechanisms. For example, you can't do GCM without a block cipher, or RSA-PSS without RSA keys. When mechanism A requires mechanism B, `include/mbedtls/config_psa.h` ensures that B is enabled whenever A is enabled. When mechanism A requires at least one of a set {B1, B2, B3, ...} but there is no particular reason why enabling A would enable any of the specific Bi's, it's up to the application to choose Bi's and the file `library/check_crypto_config.h` contains compile-time constraints to ensure that at least one Bi is enabled.
### Implementation of the mechanisms
The general structure of a cryptographic operation function is:
1. API function defined in `library/psa_crypto.c`. The entry point performs generic checks that don't depend on whether the mechanism is implemented in software or in a driver and looks up keys in the key store.
2. Driver dispatch code in `scripts/data_files/driver_templates/psa_crypto_driver_wrappers.h.jinja`, `scripts/data_files/driver_templates/psa_crypto_driver_wrappers_no_static.c.jinja` or files included from there.
3. Built-in implementation in `library/psa_crypto_*.c` (with function declarations in the corresponding `.h` file). These files typically contain the implementation of modes of operation over basic building blocks that are defined elsewhere. For example, HMAC is implemented in `library/psa_crypto_mac.c` but the underlying hash functions are implemented in `library/sha*.c` and `library/md*.c`.
4. Basic cryptographic building blocks in `library/*.c`.
When implementing a new algorithm or key type, there are typically things to change in `library/crypto.c` (e.g. buffer size calculations, algorithm/key-type compatibility) and in the built-in implementation, but not in the driver dispatch code.
### Translucent data structures
Some mechanisms require state to be kept between function calls. Keys and key-like data is kept in the key store, which PSA manages internally. Other state, for example the state of multipart operations, is kept in structures allocated by the caller.
The size of operation structures needs to be known at compile time, since callers may allocate them on the stack. Therefore these structures are defined in a public header: `include/psa/crypto_struct.h` for the parts that are independent of the underlying implementation, `include/psa/crypto_builtin_*` for parts that are specific to the Mbed TLS built-in implementation, `include/psa/crypto_driver_*.h` for structures implemented by drivers.
### Unit tests
A number of unit tests are automatically generated by `tests/scripts/generate_psa_tests.py` based on the algorithms and key types declared in `include/psa/crypto_values.h` and `include/psa/crypto_extra.h`:
* Attempt to create a key with a key type that is not supported.
* Attempt to perform an operation with a combination of key type and algorithm that is not valid or not supported.
* Storage and retrieval of a persistent key.
When adding a new key type or algorithm:
* `scripts/mbedtls_dev/crypto_knowledge.py` contains knowledge about the compatibility of key types, key sizes and algorithms.
* `scripts/mbedtls_dev/asymmetric_key_data.py` contains valid key data for asymmetric key types.
Other things need to be tested manually, either in `tests/suites/test_sutie_psa_crypto.data` or in another file. For example (this is not an exhaustive list):
* Known answer tests.
* Potential edge cases (e.g. data less/equal/more than the block size, number equal to zero in asymmetric cryptography).
* Tests with invalid keys (e.g. wrong size or format).
* Tests with invalid data (e.g. wrong size or format, output buffer too small, invalid padding).
* For new functions: incorrect function call sequence, driver dispatch (in `tests/suites/test_suite_psa_crypto_driver_wrappers.*`).
* For key derivation algorithms: variation on the sequence of input steps, variation on the output size.

View File

@@ -0,0 +1,616 @@
PSA migration strategy for hashes and ciphers
=============================================
## Introduction
This document discusses a migration strategy for code that is not subject to `MBEDTLS_USE_PSA_CRYPTO`, is currently using legacy cryptography APIs, and should transition to PSA, without a major version change.
### Relationship with the main strategy document
This is complementary to the main [strategy document](strategy.html) and is intended as a refinement. However, at this stage, there may be contradictions between the strategy proposed here and some of the earlier strategy.
A difference between the original strategy and the current one is that in this work, we are not treating PSA as a black box. We can change experimental features, and we can call internal interfaces.
## Requirements
### User stories
#### Backward compatibility user story
As a developer of an application that uses Mbed TLS's interfaces (including legacy crypto),
I want Mbed TLS to preserve backward compatibility,
so that my code keeps working in new minor versions of Mbed TLS.
#### Interface design user story
As a developer of library code that uses Mbed TLS to perform cryptographic operations,
I want to know which functions to call and which feature macros to check,
so that my code works in all Mbed TLS configurations.
Note: this is the same problem we face in X.509 and TLS.
#### Hardware accelerator vendor user stories
As a vendor of a platform with hardware acceleration for some crypto,
I want to build Mbed TLS in a way that uses my hardware wherever relevant,
so that my customers maximally benefit from my hardware.
As a vendor of a platform with hardware acceleration for some crypto,
I want to build Mbed TLS without software that replicates what my hardware does,
to minimize the code size.
#### Maintainer user stories
As a maintainer of Mbed TLS,
I want to have clear rules for when to use which interface,
to avoid bugs in “unusual” configurations.
As a maintainer of Mbed TLS,
I want to avoid duplicating code,
because this is inefficient and error-prone.
### Use PSA more
In the long term, all code using cryptography should use PSA interfaces, to benefit from PSA drivers, allow eliminating legacy interfaces (less code size, less maintenance). However, this can't be done without breaking [backward compatibility](#backward-compatibility).
The goal of this work is to arrange for more non-PSA interfaces to use PSA interfaces under the hood, without breaking code in the cases where this doesn't work. Using PSA interfaces has two benefits:
* Where a PSA driver is available, it likely has better performance, and sometimes better security, than the built-in software implementation.
* In many scenarios, where a PSA driver is available, this allows removing the software implementation altogether.
* We may be able to get rid of some redundancies, for example the duplication between the implementations of HMAC in `md.c` and in `psa_crypto_mac.c`, and HKDF in `hkdf.c` and `psa_crypto.c`.
### Correct dependencies
Traditionally, to determine whether a cryptographic mechanism was available, you had to check whether the corresponding Mbed TLS module or submodule was present: `MBEDTLS_SHA256_C` for SHA256, `MBEDTLS_AES_C && MBEDTLS_CIPHER_MODE_CBC` for AES-CBC, etc. In code that uses the PSA interfaces, this needs to change to `PSA_WANT_xxx` symbols.
### Backward compatibility
All documented behavior must be preserved, except for interfaces currently described as experimental or unstable. Those interfaces can change, but we should minimize disruption by providing a transition path for reasonable use cases.
#### Changeable configuration options
The following configuration options are described as experimental, and are likely to change at least marginally:
* `MBEDTLS_PSA_CRYPTO_CLIENT`: “This interface is experimental and may change or be removed without notice.” In practice we don't want to remove this, but we may constrain how it's used.
* `MBEDTLS_PSA_CRYPTO_DRIVERS`: “This interface is experimental. We intend to maintain backward compatibility with application code that relies on drivers, but the driver interfaces may change without notice.” In practice, this may mean constraints not only on how to write drivers, but also on how to integrate drivers into code that is platform code more than application code.
* `MBEDTLS_PSA_CRYPTO_CONFIG`: “This feature is still experimental and is not ready for production since it is not completed.” We may want to change this, for example, to automatically enable more mechanisms (although this wouldn't be considered a backward compatibility break anyway, since we don't promise that you will not get a feature if you don't enable its `PSA_WANT_xxx`).
### Non-goals
It is not a goal at this stage to make more code directly call `psa_xxx` functions. Rather, the goal is to make more code call PSA drivers where available. How dispatch is done is secondary.
## Problem analysis
### Scope analysis
#### Limitations of `MBEDTLS_USE_PSA_CRYPTO`
The option `MBEDTLS_USE_PSA_CRYPTO` causes parts of the library to call the PSA API instead of legacy APIs for cryptographic calculations. `MBEDTLS_USE_PSA_CRYPTO` only applies to `pk.h`, X.509 and TLS. When this option is enabled, applications must call `psa_crypto_init()` before calling any of the functions in these modules.
In this work, we want two things:
* Make non-covered modules call PSA, but only [when this will actually work](#why-psa-is-not-always-possible). This effectively brings those modules to a partial use-PSA behavior (benefiting from PSA accelerators when they're usable) regardless of whether the option is enabled.
* Call PSA when a covered module calls a non-covered module which calls another module, for example X.509 calling pk for PSS verification which calls RSA which calculates a hash ([see issue \#6497](https://github.com/Mbed-TLS/mbedtls/issues/6497)). This effectively extends the option to modules that aren't directly covered.
#### Classification of callers
We can classify code that implements or uses cryptographic mechanisms into several groups:
* Software implementations of primitive cryptographic mechanisms. These are not expected to change.
* Software implementations of constructed cryptographic mechanisms (e.g. HMAC, CTR_DRBG, RSA (calling a hash for PSS/OAEP, and needing to know the hash length in PKCS1v1.5 sign/verify), …). These need to keep working whenever a legacy implementation of the auxiliary mechanism is available, regardless of whether a PSA implementation is also available.
* Code implementing the PSA crypto interface. This is not expected to change, except perhaps to expose some internal functionality to overhauled glue code.
* Code that's subject to `MBEDTLS_USE_PSA_CRYPTO`: `pk.h`, X.509, TLS (excluding parts specific TLS 1.3).
* Code that always uses PSA for crypto: TLS 1.3 (except things common with 1.2), LMS.
For the purposes of this work, three domains emerge:
* **Legacy domain**: does not interact with PSA. Implementations of hashes, of cipher primitives, of arithmetic.
* **Mixed domain**: does not currently use PSA, but should [when possible](#why-psa-is-not-always-possible). This consists of the constructed cryptographic primitives (except LMS), as well as pk, X.509 and TLS when `MBEDTLS_USE_PSA_CRYPTO` is disabled.
* **PSA domain**: includes pk, X.509 and TLS when `MBEDTLS_USE_PSA_CRYPTO` is enabled. Also TLS 1.3, LMS.
#### Non-use-PSA modules
The following modules in Mbed TLS call another module to perform cryptographic operations which, in the long term, will be provided through a PSA interface, but cannot make any PSA-related assumption.
Hashes and HMAC (after the work on driver-only hashes):
* entropy (hashes via MD-light)
* ECDSA (HMAC\_DRBG; `md.h` exposed through API)
* ECJPAKE (hashes via MD-light; `md.h` exposed through API)
* MD (hashes and HMAC)
* HKDF (HMAC via `md.h`; `md.h` exposed through API)
* HMAC\_DRBG (hashes and HMAC via `md.h`; `md.h` exposed through API)
* PKCS12 (hashes via MD-light)
* PKCS5 (HMAC via `md.h`; `md.h` exposed through API)
* PKCS7 (hashes via MD)
* RSA (hash via MD-light for PSS and OAEP; `md.h` exposed through API)
* PEM (MD5 hash via MD-light)
Symmetric ciphers and AEADs (before work on driver-only cipher):
* PEM:
* AES, DES or 3DES in CBC mode without padding, decrypt only (!).
* Currently using low-level non-generic APIs.
* No hard dependency, features guarded by `AES_C` resp. `DES_C`.
* Functions called: `setkey_dec()` + `crypt_cbc()`.
* PKCS12:
* In practice: 2DES or 3DES in CBC mode with PKCS7 padding, decrypt only
(when called from pkparse).
* In principle: any cipher-mode (default padding), passed an
`mbedtls_cipher_type_t` as an argument, no documented restriction.
* Cipher, generically, selected from ASN.1 or function parameters;
no documented restriction but in practice TODO (inc. padding and
en/decrypt, look at standards and tests)
* Unconditional dependency on `CIPHER_C` in `check_config.h`.
* Note: `cipher.h` exposed through API.
* Functions called: `setup`, `setkey`, `set_iv`, `reset`, `update`, `finish` (in sequence, once).
* PKCS5 (PBES2, `mbedtls_pkcs5_pbes2()`):
* 3DES or DES in CBC mode with PKCS7 padding, both encrypt and decrypt.
* Note: could also be AES in the future, see #7038.
* Unconditional dependency on `CIPHER_C` in `check_config.h`.
* Functions called: `setup`, `setkey`, `crypt`.
* CTR\_DRBG:
* AES in ECB mode, encrypt only.
* Currently using low-level non-generic API (`aes.h`).
* Unconditional dependency on `AES_C` in `check_config.h`.
* Functions called: `setkey_enc`, `crypt_ecb`.
* CCM:
* AES, Camellia or Aria in ECB mode, encrypt only.
* Unconditional dependency on `AES_C || CAMELLIA_C || ARIA_C` in `check_config.h`.
* Unconditional dependency on `CIPHER_C` in `check_config.h`.
* Note: also called by `cipher.c` if enabled.
* Functions called: `info`, `setup`, `setkey`, `update` (several times) - (never finish)
* CMAC:
* AES or DES in ECB mode, encrypt only.
* Unconditional dependency on `AES_C || DES_C` in `check_config.h`.
* Unconditional dependency on `CIPHER_C` in `check_config.h`.
* Note: also called by `cipher.c` if enabled.
* Functions called: `info`, `setup`, `setkey`, `update` (several times) - (never finish)
* GCM:
* AES, Camellia or Aria in ECB mode, encrypt only.
* Unconditional dependency on `AES_C || CAMELLIA_C || ARIA_C` in `check_config.h`.
* Unconditional dependency on `CIPHER_C` in `check_config.h`.
* Note: also called by `cipher.c` if enabled.
* Functions called: `info`, `setup`, `setkey`, `update` (several times) - (never finish)
* NIST\_KW:
* AES in ECB mode, both encryt and decrypt.
* Unconditional dependency on `AES_C || DES_C` in `check_config.h`.
* Unconditional dependency on `CIPHER_C` in `check_config.h`.
* Note: also called by `cipher.c` if enabled.
* Note: `cipher.h` exposed through API.
* Functions called: `info`, `setup`, `setkey`, `update` (several times) - (never finish)
* Cipher:
* potentially any cipher/AEAD in any mode and any direction
Note: PSA cipher is built on Cipher, but PSA AEAD directly calls the underlying AEAD modules (GCM, CCM, ChachaPoly).
### Difficulties
#### Why PSA is not always possible
Here are some reasons why calling `psa_xxx()` to perform a hash or cipher calculation might not be desirable in some circumstances, explaining why the application would arrange to call the legacy software implementation instead.
* `MBEDTLS_PSA_CRYPTO_C` is disabled.
* There is a PSA driver which has not been initialized (this happens in `psa_crypto_init()`).
* For ciphers, the keystore is not initialized yet, and Mbed TLS uses a custom implementation of PSA ITS where the file system is not accessible yet (because something else needs to happen first, and the application takes care that it happens before it calls `psa_crypto_init()`). A possible workaround may be to dispatch to the internal functions that are called after the keystore lookup, rather than to the PSA API functions (but this is incompatible with `MBEDTLS_PSA_CRYPTO_CLIENT`).
* The requested mechanism is enabled in the legacy interface but not in the PSA interface. This was not really intended, but is possible, for example, if you enable `MBEDTLS_MD5_C` for PEM decoding with PBKDF1 but don't want `PSA_ALG_WANT_MD5` because it isn't supported for `PSA_ALG_RSA_PSS` and `PSA_ALG_DETERMINISTIC_ECDSA`.
* `MBEDTLS_PSA_CRYPTO_CLIENT` is enabled, and the client has not yet activated the connection to the server (this happens in `psa_crypto_init()`).
* `MBEDTLS_PSA_CRYPTO_CLIENT` is enabled, but the operation is part of the implementation of an encrypted communication with the crypto service, or the local implementation is faster because it avoids a costly remote procedure call.
#### Indirect knowledge
Consider for example the code in `rsa.c` to perform an RSA-PSS signature. It needs to calculate a hash. If `mbedtls_rsa_rsassa_pss_sign()` is called directly by application code, it is supposed to call the built-in implementation: calling a PSA accelerator would be a behavior change, acceptable only if this does not add a risk of failure or performance degradation ([PSA is impossible or undesirable in some circumstances](#why-psa-is-not-always-possible)). Note that this holds regardless of the state of `MBEDTLS_USE_PSA_CRYPTO`, since `rsa.h` is outside the scope of `MBEDTLS_USE_PSA_CRYPTO`. On the other hand, if `mbedtls_rsa_rsassa_pss_sign()` is called from X.509 code, it should use PSA to calculate hashes. It doesn't, currently, which is [bug \#6497](https://github.com/Mbed-TLS/mbedtls/issues/6497).
Generally speaking, modules in the mixed domain:
* must call PSA if called by a module in the PSA domain;
* must not call PSA (or must have a fallback) if their caller is not in the PSA domain and the PSA call is not guaranteed to work.
#### Non-support guarantees: requirements
Generally speaking, just because some feature is not enabled in `mbedtls_config.h` or `psa_config.h` doesn't guarantee that it won't be enabled in the build. We can enable additional features through `build_info.h`.
If `PSA_WANT_xxx` is disabled, this should guarantee that attempting xxx through the PSA API will fail. This is generally guaranteed by the test suite `test_suite_psa_crypto_not_supported` with automatically enumerated test cases, so it would be inconvenient to carve out an exception.
### Technical requirements
Based on the preceding analysis, the core of the problem is: for code in the mixed domain (see [“Classification of callers”](#classification-of-callers)), how do we handle a cryptographic mechanism? This has several related subproblems:
* How the mechanism is encoded (e.g. `mbedtls_md_type_t` vs `const *mbedtls_md_info_t` vs `psa_algorithm_t` for hashes).
* How to decide whether a specific algorithm or key type is supported (eventually based on `MBEDTLS_xxx_C` vs `PSA_WANT_xxx`).
* How to obtain metadata about algorithms (e.g. hash/MAC/tag size, key size).
* How to perform the operation (context type, which functions to call).
We need a way to decide this based on the available information:
* Who's the ultimate caller — see [indirect knowledge](#indirect-knowledge) — which is not actually available.
* Some parameter indicating which algorithm to use.
* The available cryptographic implementations, based on preprocessor symbols (`MBEDTLS_xxx_C`, `PSA_WANT_xxx`, `MBEDTLS_PSA_ACCEL_xxx`, etc.).
* Possibly additional runtime state (for example, we might check whether `psa_crypto_init` has been called).
And we need to take care of the [the cases where PSA is not possible](#why-psa-is-not-always-possible): either make sure the current behavior is preserved, or (where allowed by backward compatibility) document a behavior change and, preferably, a workaround.
### Working through an example: RSA-PSS
Let us work through the example of RSA-PSS which calculates a hash, as in [see issue \#6497](https://github.com/Mbed-TLS/mbedtls/issues/6497).
RSA is in the [mixed domain](#classification-of-callers). So:
* When called from `psa_sign_hash` and other PSA functions, it must call the PSA hash accelerator if there is one.
* When called from user code, it must call the built-in hash implementation if PSA is not available (regardless of whether this is because `MBEDTLS_PSA_CRYPTO_C` is disabled, or because `PSA_WANT_ALG_xxx` is disabled for this hash, or because there is an accelerator driver which has not been initialized yet).
RSA knows which hash algorithm to use based on a parameter of type `mbedtls_md_type_t`. (More generally, all mixed-domain modules that take an algorithm specification as a parameter take it via a numerical type, except HMAC\_DRBG and HKDF which take a `const mbedtls_md_info_t*` instead, and CMAC which takes a `const mbedtls_cipher_info_t *`.)
#### Double encoding solution
A natural solution is to double up the encoding of hashes in `mbedtls_md_type_t`. Pass `MBEDTLS_MD_SHA256` and `md` will dispatch to the legacy code, pass a new constant `MBEDTLS_MD_SHA256_USE_PSA` and `md` will dispatch through PSA.
This maximally preserves backward compatibility, but then no non-PSA code benefits from PSA accelerators, and there's little potential for removing the software implementation.
#### Availability of hashes in RSA-PSS
Here we try to answer the question: As a caller of RSA-PSS via `rsa.h`, how do I know whether it can use a certain hash?
* For a caller in the legacy domain: if e.g. `MBEDTLS_SHA256_C` is enabled, then I want RSA-PSS to support SHA-256. I don't care about negative support. So `MBEDTLS_SHA256_C` must imply support for RSA-PSS-SHA-256. It must work at all times, regardless of the state of PSA (e.g. drivers not initialized).
* For a caller in the PSA domain: if e.g. `PSA_WANT_ALG_SHA_256` is enabled, then I want RSA-PSS to support SHA-256, provided that `psa_crypto_init()` has been called. In some limited cases, such as `test_suite_psa_crypto_not_supported` when PSA implements RSA-PSS in software, we care about negative support: if `PSA_WANT_ALG_SHA_256` is disabled then `psa_verify_hash` must reject `PSA_WANT_ALG_SHA_256`. This can be done at the level of PSA before it calls the RSA module, though, so it doesn't have any implication on the RSA module. As far as `rsa.c` is concerned, what matters is that `PSA_WANT_ALG_SHA_256` implies that SHA-256 is supported after `psa_crypto_init()` has been called.
* For a caller in the mixed domain: requirements depend on the caller. Whatever solution RSA has to determine the availability of algorithms will apply to its caller as well.
Conclusion so far: RSA must be able to do SHA-256 if either `MBEDTLS_SHA256_C` or `PSA_WANT_ALG_SHA_256` is enabled. If only `PSA_WANT_ALG_SHA_256` and not `MBEDTLS_SHA256_C` is enabled (which implies that PSA's SHA-256 comes from an accelerator driver), then SHA-256 only needs to work if `psa_crypto_init()` has been called.
#### More in-depth discussion of compile-time availability determination
The following combinations of compile-time support are possible:
* `MBEDTLS_PSA_CRYPTO_CLIENT`. Then calling PSA may or may not be desirable for performance. There are plausible use cases where only the server has access to an accelerator so it's best to call the server, and plausible use cases where calling the server has overhead that negates the savings from using acceleration, if there are savings at all. In any case, calling PSA only works if the connection to the server has been established, meaning `psa_crypto_init` has been called successfully. In the rest of this case enumeration, assume `MBEDTLS_PSA_CRYPTO_CLIENT` is disabled.
* No PSA accelerator. Then just call `mbedtls_sha256`, it's all there is, and it doesn't matter (from an API perspective) exactly what call chain leads to it.
* PSA accelerator, no software implementation. Then we might as well call the accelerator, unless it's important that the call fails. At the time of writing, I can't think of a case where we would want to guarantee that if `MBEDTLS_xxx_C` is not enabled, but xxx is enabled through PSA, then a request to use algorithm xxx through some legacy interface must fail.
* Both PSA acceleration and the built-in implementation. In this case, we would prefer PSA for the acceleration, but we can only do this if the accelerator driver is working. For hashes, it's enough to assume the driver is initialized; we've [considered requiring hash drivers to work without initialization](https://github.com/Mbed-TLS/mbedtls/pull/6470). For ciphers, this is more complicated because the cipher functions require the keystore, and plausibly a cipher accelerator might want entropy (for side channel countermeasures) which might not be available at boot time.
Note that it's a bit tricky to determine which algorithms are available. In the case where there is a PSA accelerator but no software implementation, we don't want the preprocessor symbols to indicate that the algorithm is available through the legacy domain, only through the PSA domain. What does this mean for the interfaces in the mixed domain? They can't guarantee the availability of the algorithm, but they must try if requested.
### Designing an interface for hashes
In this section, we specify a hash metadata and calculation for the [mixed domain](#classification-of-callers), i.e. code that can be called both from legacy code and from PSA code.
#### Availability of hashes
Generalizing the analysis in [“Availability of hashes in RSA-PSS”](#availability-of-hashes-in-RSA-PSS):
A hash is available through the mixed-domain interface iff either of the following conditions is true:
* A legacy hash interface is available and the hash algorithm is implemented in software.
* PSA crypto is enabled and the hash algorithm is implemented via PSA.
We could go further and make PSA accelerators available to legacy callers that call any legacy hash interface, e.g. `md.h` or `shaX.h`. There is little point in doing this, however: callers should just use the mixed-domain interface.
#### Implications between legacy availability and PSA availability
* When `MBEDTLS_PSA_CRYPTO_CONFIG` is disabled, all legacy mechanisms are automatically enabled through PSA. Users can manually enable PSA mechanisms that are available through accelerators but not through legacy, but this is not officially supported (users are not supposed to manually define PSA configuration symbols when `MBEDTLS_PSA_CRYPTO_CONFIG` is disabled).
* When `MBEDTLS_PSA_CRYPTO_CONFIG` is enabled, there is no mandatory relationship between PSA support and legacy support for a mechanism. Users can configure legacy support and PSA support independently. Legacy support is automatically enabled if PSA support is requested, but only if there is no accelerator.
It is strongly desirable to allow mechanisms available through PSA but not legacy: this allows saving code size when an accelerator is present.
There is no strong reason to allow mechanisms available through legacy but not PSA when `MBEDTLS_PSA_CRYPTO_C` is enabled. This would only save at best a very small amount of code size in the PSA dispatch code. This may be more desirable when `MBEDTLS_PSA_CRYPTO_CLIENT` is enabled (having a mechanism available only locally and not in the crypto service), but we do not have an explicit request for this and it would be entirely reasonable to forbid it.
In this analysis, we have not found a compelling reason to require all legacy mechanisms to also be available through PSA. However, this can simplify both the implementation and the use of dispatch code thanks to some simplifying properties:
* Mixed-domain code can call PSA code if it knows that `psa_crypto_init()` has been called, without having to inspect the specifics of algorithm support.
* Mixed-domain code can assume that PSA buffer calculations work correctly for all algorithms that it supports.
#### Shape of the mixed-domain hash interface
We now need to create an abstraction for mixed-domain hash calculation. (We could not create an abstraction, but that would require every piece of mixed-domain code to replicate the logic here. We went that route in Mbed TLS 3.3, but it made it effectively impossible to get something that works correctly.)
Requirements: given a hash algorithm,
* Obtain some metadata about it (size, block size).
* Calculate the hash.
* Set up a multipart operation to calculate the hash. The operation must support update, finish, reset, abort, clone.
The existing interface in `md.h` is close to what we want, but not perfect. What's wrong with it?
* It has an extra step of converting from `mbedtls_md_type_t` to `const mbedtls_md_info_t *`.
* It includes extra fluff such as names and HMAC. This costs code size.
* The md module has some legacy baggage dating from when it was more open, which we don't care about anymore. This may cost code size.
These problems are easily solvable.
* `mbedtls_md_info_t` can become a very thin type. We can't remove the extra function call from the source code of callers, but we can make it a very thin abstraction that compilers can often optimize.
* We can make names and HMAC optional. The mixed-domain hash interface won't be the full `MBEDTLS_MD_C` but a subset.
* We can optimize `md.c` without making API changes to `md.h`.
### Scope reductions and priorities for 3.x
This section documents things that we chose to temporarily exclude from the scope in the 3.x branch (which will eventually be in scope again after 4.0) as well as things we chose to prioritize if we don't have time to support everything.
#### Don't support PK, X.509 and TLS without `MBEDTLS_USE_PSA_CRYPTO`
We do not need to support driver-only hashes and ciphers in PK. X.509 and TLS without `MBEDTLS_USE_PSA_CRYPTO`. Users who want to take full advantage of drivers will need to enabled this macro.
Note that this applies to TLS 1.3 as well, as some uses of hashes and all uses of ciphers there are common with TLS 1.2, hence governed by `MBEDTLS_USE_PSA_CRYPTO`, see [this macro's extended documentation](../../docs/use-psa-crypto.html).
This will go away naturally in 4.0 when this macros is not longer an option (because it's always on).
#### Don't support for `MBEDTLS_PSA_CRYPTO_CLIENT` without `MBEDTLS_PSA_CRYPTO_C`
We generally don't really support builds with `MBEDTLS_PSA_CRYPTO_CLIENT` without `MBEDTLS_PSA_CRYPTO_C`. For example, both `MBEDTLS_USE_PSA_CRYPTO` and `MBEDTLS_SSL_PROTO_TLS1_3` require `MBEDTLS_PSA_CRYPTO_C`, while in principle they should only require `MBEDTLS_PSA_CRYPTO_CLIENT`.
Considering this existing restriction which we do not plan to lift before 4.0, it is acceptable driver-only hashes and cipher support to have the same restriction in 3.x.
It is however desirable for the design to keep support for `MBEDTLS_PSA_CRYPTO_CLIENT` in mind, in order to avoid making it more difficult to add in the future.
#### For cipher: prioritize constrained devices and modern TLS
The primary target is a configuration like TF-M's medium profile, plus TLS with only AEAD ciphersuites.
This excludes things like:
- Support for encrypted PEM, PKCS5 and PKCS12 encryption, and PKCS8 encrypted keys in PK parse. (Not widely used on highly constrained devices.)
- Support for NIST-KW. (Same justification.)
- Support for CMAC. (Same justification, plus can be directly accelerated.)
- Support for CBC ciphersuites in TLS. (They've been recommended against for a while now.)
### Dual-dispatch for block cipher primitives
Considering the priorities stated above, initially we want to support GCM, CCM and CTR-DRBG. All three of them use the block cipher primitive only in the encrypt direction. Currently, GCM and CCM use the Cipher layer in order to work with AES, Aria and Camellia (DES is excluded by the standards due to its smaller block size) and CTR-DRBG directly uses the low-level API from `aes.h`. In all cases, access to the "block cipher primitive" is done by using "ECB mode" (which for both Cipher and `aes.h` only allows a single block, contrary to PSA which implements actual ECB mode).
The two AEAD modes, GCM and CCM, have very similar needs and positions in the stack, strongly suggesting using the same design for both. On the other hand, there are a number of differences between CTR-DRBG and them.
- CTR-DRBG only uses AES (and there is no plan to extend it to other block ciphers at the moment), while GCM and CCM need to work with 3 block ciphers already.
- CTR-DRBG holds a special position in the stack: most users don't care about it per se, they only care about getting random numbers - in fact PSA users don't even need to know what DRBG is used. In particular, no part of the stack is asking questions like "is CTR-DRBG-AES available?" - an RNG needs to be available and that's it - contrary to similar questions about AES-GCM etc. which are asked for example by TLS.
So, it makes sense to use different designs for CTR-DRBG on one hand, and GCM/CCM on the other hand:
- CTR-DRBG can just check if `AES_C` is present and "fall back" to PSA if not.
- GCM and CCM need an common abstraction layer that allows:
- Using AES, Aria or Camellia in a uniform way.
- Dispatching to built-in or driver.
The abstraction layer used by GCM and CCM may either be a new internal module, or a subset of the existing Cipher API, extended with the ability to dispatch to a PSA driver.
Reasons for making this layer's API a subset of the existing Cipher API:
- No need to design, implement and test a new module. (Will need to test the new subset though, as well as the extended behaviour.)
- No code change in GCM and CCM - only need to update dependencies.
- No risk for code duplication between a potential new module and Cipher: source-level, and in in particular in builds that still have `CIPHER_C` enabled. (Compiled-code duplication could be avoided by excluding the new module in such builds, though.)
- If want to support other users of Cipher later (such as NIST-KW, CMAC, PKCS5 and PKCS12), we can just extend dual-dispatch support to other modes/operations in Cipher and keep those extra modules unchanged as well.
Possible costs of re-using (a subset of) the existing Cipher API instead of defining a new one:
- We carry over costs associated with `cipher_info_t` structures. (Currently the info structure is used for 3 things: (1) to check if the cipher is supported, (2) to check its block size, (3) because `setup()` requires it).
- We carry over questionable implementation decisions, like dynamic allocation of context.
Those costs could be avoided by refactoring (parts of) Cipher, but that would probably mean either:
- significant differences in how the `cipher.h` API is implemented between builds with the full Cipher or only a subset;
- or more work to apply the simplifications to all of Cipher.
Prototyping both approaches showed better code size savings and cleaner code with a new internal module (see section "Internal "block cipher" abstraction (Cipher light)" below).
## Specification
### MD light
#### Definition of MD light
MD light is a subset of `md.h` that implements the hash calculation interface described in ”[Designing an interface for hashes](#designing-an-interface-for-hashes)”. It is activated by `MBEDTLS_MD_LIGHT` in `mbedtls_config.h`.
The following things enable MD light automatically in `build_info.h`:
* A [mixed-domain](#classification-of-callers) module that needs to calculate hashes is enabled.
* `MBEDTLS_MD_C` is enabled.
MD light includes the following types:
* `mbedtls_md_type_t`
* `mbedtls_md_info_t`
* `mbedtls_md_context_t`
MD light includes the following functions:
* `mbedtls_md_info_from_type`
* `mbedtls_md_init`
* `mbedtls_md_free`
* `mbedtls_md_setup` — but `hmac` must be 0 if `MBEDTLS_MD_C` is disabled.
* `mbedtls_md_clone`
* `mbedtls_md_get_size`
* `mbedtls_md_get_type`
* `mbedtls_md_starts`
* `mbedtls_md_update`
* `mbedtls_md_finish`
* `mbedtls_md`
Unlike the full MD, MD light does not support null pointers as `mbedtls_md_context_t *`. At least some functions still need to support null pointers as `const mbedtls_md_info_t *` because this arises when you try to use an unsupported algorithm (`mbedtls_md_info_from_type` returns `NULL`).
#### MD algorithm support macros
For each hash algorithm, `md.h` defines a macro `MBEDTLS_MD_CAN_xxx` whenever the corresponding hash is available through MD light. These macros are only defined when `MBEDTLS_MD_LIGHT` is enabled. Per “[Availability of hashes](#availability-of-hashes)”, `MBEDTLS_MD_CAN_xxx` is enabled if:
* the corresponding `MBEDTLS_xxx_C` is defined; or
* one of `MBEDTLS_PSA_CRYPTO_C` or `MBEDTLS_PSA_CRYPTO_CLIENT` is enabled, and the corresponding `PSA_WANT_ALG_xxx` is enabled.
Note that some algorithms have different spellings in legacy and PSA. Since MD is a legacy interface, we'll use the legacy names. Thus, for example:
```
#if defined(MBEDTLS_MD_LIGHT)
#if defined(MBEDTLS_SHA256_C) || \
(defined(MBEDTLS_PSA_CRYPTO_C) && PSA_WANT_ALG_SHA_256)
#define MBEDTLS_MD_CAN_SHA256
#endif
#endif
```
Note: in the future, we may want to replace `defined(MBEDTLS_PSA_CRYPTO_C)`
with `defined(MBEDTLS_PSA_CRYTO_C) || defined(MBEDTLS_PSA_CRYPTO_CLIENT)` but
for now this is out of scope.
#### MD light internal support macros
* If at least one hash has a PSA driver, define `MBEDTLS_MD_SOME_PSA`.
* If at least one hash has a legacy implementation, defined `MBEDTLS_MD_SOME_LEGACY`.
#### Support for PSA in the MD context
An MD context needs to contain either a legacy module's context (or a pointer to one, as is the case now), or a PSA context (or a pointer to one).
I am inclined to remove the pointer indirection, but this means that an MD context would always be as large as the largest supported hash context. So for the time being, this specification keeps a pointer. For uniformity, PSA will also have a pointer (we may simplify this later).
```
enum {
MBEDTLS_MD_ENGINE_LEGACY,
MBEDTLS_MD_ENGINE_PSA,
} mbedtls_md_engine_t; // private type
typedef struct mbedtls_md_context_t {
mbedtls_md_type_t type;
#if defined(MBEDTLS_MD_SOME_PSA)
mbedtls_md_engine_t engine;
#endif
void *md_ctx; // mbedtls_xxx_context or psa_hash_operation
#if defined(MBEDTLS_MD_C)
void *hmac_ctx;
#endif
} mbedtls_md_context_t;
```
All fields are private.
The `engine` field is almost redundant with knowledge about `type`. However, when an algorithm is available both via a legacy module and a PSA accelerator, we will choose based on the runtime availability of the accelerator when the context is set up. This choice needs to be recorded in the context structure.
#### Inclusion of MD info structures
MD light needs to support hashes that are only enabled through PSA. Therefore the `mbedtls_md_info_t` structures must be included based on `MBEDTLS_MD_CAN_xxx` instead of just the legacy module.
The same criterion applies in `mbedtls_md_info_from_type`.
#### Conversion to PSA encoding
The implementation needs to convert from a legacy type encoding to a PSA encoding.
```
static inline psa_algorithm_t psa_alg_of_md_info(
const mbedtls_md_info_t *md_info );
```
#### Determination of PSA support at runtime
```
int psa_can_do_hash(psa_algorithm_t hash_alg);
```
The job of this private function is to return 1 if `hash_alg` can be performed through PSA now, and 0 otherwise. It is only defined on algorithms that are enabled via PSA.
As a starting point, return 1 if PSA crypto's driver subsystem has been initialized.
Usage note: for algorithms that are not enabled via PSA, calling `psa_can_do_hash` is generally safe: whether it returns 0 or 1, you can call a PSA hash function on the algorithm and it will return `PSA_ERROR_NOT_SUPPORTED`.
#### Support for PSA dispatch in hash operations
Each function that performs some hash operation or context management needs to know whether to dispatch via PSA or legacy.
If given an established context, use its `engine` field.
If given an algorithm as an `mbedtls_md_type_t type` (possibly being the `type` field of a `const mbedtls_md_info_t *`):
* If there is a PSA accelerator for this hash and `psa_can_do_hash(alg)`, call the corresponding PSA function, and if applicable set the engine to `MBEDTLS_MD_ENGINE_PSA`. (Skip this is `MBEDTLS_MD_SOME_PSA` is not defined.)
* Otherwise dispatch to the legacy module based on the type as currently done. (Skip this is `MBEDTLS_MD_SOME_LEGACY` is not defined.)
* If no dispatch is possible, return `MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE`.
Note that this assumes that an operation that has been started via PSA can be completed. This implies that `mbedtls_psa_crypto_free` must not be called while an operation using PSA is in progress. Document this.
#### Error code conversion
After calling a PSA function, MD light calls `mbedtls_md_error_from_psa` to convert its status code.
### Support all legacy algorithms in PSA
As discussed in [“Implications between legacy availability and PSA availability”](#implications-between-legacy-availability-and-psa-availability), we require the following property:
> If an algorithm has a legacy implementation, it is also available through PSA.
When `MBEDTLS_PSA_CRYPTO_CONFIG` is disabled, this is already the case. When is enabled, we will now make it so as well. Change `include/mbedtls/config_psa.h` accordingly.
### MD light optimizations
This section is not necessary to implement MD light, but will cut down its code size.
#### Split names out of MD light
Remove hash names from `mbedtls_md_info_t`. Use a simple switch-case or a separate list to implement `mbedtls_md_info_from_string` and `mbedtls_md_get_name`.
#### Remove metadata from the info structure
In `mbedtls_md_get_size` and in modules that want a hash's block size, instead of looking up hash metadata in the info structure, call the PSA macros.
#### Optimize type conversions
To allow optimizing conversions between `mbedtls_md_type_t` and `psa_algorithm_t`, renumber the `mbedtls_md_type_t` enum so that the values are the 8 lower bits of the PSA encoding.
With this optimization,
```
static inline psa_algorithm_t psa_alg_of_md_info(
const mbedtls_md_info_t *md_info )
{
if( md_info == NULL )
return( PSA_ALG_NONE );
return( PSA_ALG_CATEGORY_HASH | md_info->type );
}
```
Work in progress on this conversion is at https://github.com/gilles-peskine-arm/mbedtls/tree/hash-unify-ids-wip-1
#### Unify HMAC with PSA
PSA has its own HMAC implementation. In builds with both `MBEDTLS_MD_C` and `PSA_WANT_ALG_HMAC` not fully provided by drivers, we should have a single implementation. Replace the one in `md.h` by calls to the PSA driver interface. This will also give mixed-domain modules access to HMAC accelerated directly by a PSA driver (eliminating the need to a HMAC interface in software if all supported hashes have an accelerator that includes HMAC support).
### Improving support for `MBEDTLS_PSA_CRYPTO_CLIENT`
So far, MD light only dispatches to PSA if an algorithm is available via `MBEDTLS_PSA_CRYPTO_C`, not if it's available via `MBEDTLS_PSA_CRYPTO_CLIENT`. This is acceptable because `MBEDTLS_USE_PSA_CRYPTO` requires `MBEDTLS_PSA_CRYPTO_C`, hence mixed-domain code never invokes PSA.
The architecture can be extended to support `MBEDTLS_PSA_CRYPTO_CLIENT` with a little extra work. Here is an overview of the task breakdown, which should be fleshed up after we've done the first [migration](#migration-to-md-light):
* Compile-time dependencies: instead of checking `defined(MBEDTLS_PSA_CRYPTO_C)`, check `defined(MBEDTLS_PSA_CRYPTO_C) || defined(MBEDTLS_PSA_CRYPTO_CLIENT)`.
* Implementers of `MBEDTLS_PSA_CRYPTO_CLIENT` will need to provide `psa_can_do_hash()` (or a more general function `psa_can_do`) alongside `psa_crypto_init()`. Note that at this point, it will become a public interface, hence we won't be able to change it at a whim.
### Internal "block cipher" abstraction (previously known as "Cipher light")
#### Definition
The new module is automatically enabled in `config_adjust_legacy_crypto.h` by modules that need
it (namely: CCM, GCM) only when `CIPHER_C` is not available, or the new module
is needed for PSA dispatch (see next section). Note: CCM and GCM currently
depend on the full `CIPHER_C` (enforced by `check_config.h`); this hard
dependency would be replaced by the above auto-enablement.
The following API functions are offered:
```
void mbedtls_block_cipher_init(mbedtls_block_cipher_context_t *ctx);
void mbedtls_block_cipher_free(mbedtls_block_cipher_context_t *ctx);
int mbedtls_block_cipher_setup(mbedtls_block_cipher_context_t *ctx,
mbedtls_cipher_id_t cipher_id);
int mbedtls_block_cipher_setkey(mbedtls_block_cipher_context_t *ctx,
const unsigned char *key,
unsigned key_bitlen);
int mbedtls_block_cipher_encrypt(mbedtls_block_cipher_context_t *ctx,
const unsigned char input[16],
unsigned char output[16]);
```
The only supported ciphers are AES, ARIA and Camellia. They are identified by
an `mbedtls_cipher_id_t` in the `setup()` function, because that's how they're
identifed by callers (GCM/CCM).
#### Block cipher dual dispatch
Support for dual dispatch in the new internal module `block_cipher` is extremely similar to that in MD light.
A block cipher context contains either a legacy module's context (AES, ARIA, Camellia) or a PSA key identifier; it has a field indicating which one is in use. All fields are private.
The `engine` field is almost redundant with knowledge about `type`. However, when an algorithm is available both via a legacy module and a PSA accelerator, we will choose based on the runtime availability of the accelerator when the context is set up. This choice needs to be recorded in the context structure.
Support is determined at runtime using the new internal function
```
int psa_can_do_cipher(psa_key_type_t key_type, psa_algorithm_t cipher_alg);
```
The job of this private function is to return 1 if `hash_alg` can be performed through PSA now, and 0 otherwise. It is only defined on algorithms that are enabled via PSA. As a starting point, return 1 if PSA crypto's driver subsystem has been initialized.
Each function in the module needs to know whether to dispatch via PSA or legacy. All functions consult the context's `engine` field, except `setup()` which will set it according to the key type and the return value of `psa_can_do_cipher()` as discussed above.
Note that this assumes that an operation that has been started via PSA can be completed. This implies that `mbedtls_psa_crypto_free` must not be called while an operation using PSA is in progress.
After calling a PSA function, `block_cipher` functions call `mbedtls_cipher_error_from_psa` to convert its status code.

View File

@@ -0,0 +1,140 @@
#!/bin/sh
# This script runs tests before and after a PR and analyzes the results in
# order to highlight any difference in the set of tests skipped.
#
# It can be used to check the first testing criterion mentioned in strategy.md,
# end of section "Supporting builds with drivers without the software
# implementation", namely: the sets of tests skipped in the default config and
# the full config must be the same before and after the PR.
#
# USAGE:
# - First, commit any uncommited changes. (Also, see warning below.)
# - Then launch --> [SKIP_SSL_OPT=1] docs/architecture/psa-migration/outcome-analysis.sh
# - SKIP_SSL_OPT=1 can optionally be set to skip ssl-opt.sh tests
#
# WARNING: this script checks out a commit other than the head of the current
# branch; it checks out the current branch again when running successfully,
# but while the script is running, or if it terminates early in error, you
# should be aware that you might be at a different commit than expected.
#
# NOTE: you can comment out parts that don't need to be re-done when
# re-running this script (for example "get numbers before this PR").
set -eu
: ${SKIP_SSL_OPT:=0}
cleanup() {
make clean
git checkout -- include/mbedtls/mbedtls_config.h include/psa/crypto_config.h
}
record() {
export MBEDTLS_TEST_OUTCOME_FILE="$PWD/outcome-$1.csv"
rm -f $MBEDTLS_TEST_OUTCOME_FILE
make check
if [ $SKIP_SSL_OPT -eq 0 ]; then
make -C programs ssl/ssl_server2 ssl/ssl_client2 \
test/udp_proxy test/query_compile_time_config
tests/ssl-opt.sh
fi
}
# save current HEAD.
# Note: this can optionally be updated to
# HEAD=$(git branch --show-current)
# when using a Git version above 2.22
HEAD=$(git rev-parse --abbrev-ref HEAD)
# get the numbers before this PR for default and full
cleanup
git checkout $(git merge-base HEAD development)
record "before-default"
cleanup
scripts/config.py full
record "before-full"
# get the numbers now for default and full
cleanup
git checkout $HEAD
record "after-default"
cleanup
scripts/config.py full
record "after-full"
cleanup
# analysis
populate_suites () {
SUITES=''
make generated_files >/dev/null
data_files=$(cd tests/suites && echo *.data)
for data in $data_files; do
suite=${data%.data}
SUITES="$SUITES $suite"
done
make neat
if [ $SKIP_SSL_OPT -eq 0 ]; then
SUITES="$SUITES ssl-opt"
extra_files=$(cd tests/opt-testcases && echo *.sh)
for extra in $extra_files; do
suite=${extra%.sh}
SUITES="$SUITES $suite"
done
fi
}
compare_suite () {
ref="outcome-$1.csv"
new="outcome-$2.csv"
suite="$3"
pattern_suite=";$suite;"
total=$(grep -c "$pattern_suite" "$ref")
sed_cmd="s/^.*$pattern_suite\(.*\);SKIP.*/\1/p"
sed -n "$sed_cmd" "$ref" > skipped-ref
sed -n "$sed_cmd" "$new" > skipped-new
nb_ref=$(wc -l <skipped-ref)
nb_new=$(wc -l <skipped-new)
name=${suite#test_suite_}
printf "%40s: total %4d; skipped %4d -> %4d\n" \
$name $total $nb_ref $nb_new
if diff skipped-ref skipped-new | grep '^> '; then
ret=1
else
ret=0
fi
rm skipped-ref skipped-new
return $ret
}
compare_builds () {
printf "\n*** Comparing $1 -> $2 ***\n"
failed=''
for suite in $SUITES; do
if compare_suite "$1" "$2" "$suite"; then :; else
failed="$failed $suite"
fi
done
if [ -z "$failed" ]; then
printf "No coverage gap found.\n"
else
printf "Suites with less coverage:%s\n" "$failed"
fi
}
populate_suites
compare_builds before-default after-default
compare_builds before-full after-full

View File

@@ -0,0 +1,344 @@
Bridges between legacy and PSA crypto APIs
==========================================
## Introduction
### Goal of this document
This document explores the needs of applications that use both Mbed TLS legacy crypto interfaces and PSA crypto interfaces. Based on [requirements](#requirements), we [analyze gaps](#gap-analysis) and [API design](#api-design).
This is a design document. The target audience is library maintainers. See the companion document [“Transitioning to the PSA API”](../../psa-transition.md) for a user focus on the same topic.
### Keywords
* [TODO] A part of the analysis that isn't finished.
* [OPEN] Open question: a specific aspect of the design where there are several plausible decisions.
* [ACTION] A finalized part of the design that will need to be carried out.
### Context
Mbed TLS 3.x supports two cryptographic APIs:
* The legacy API `mbedtls_xxx` is inherited from PolarSSL.
* The PSA API `psa_xxx` was introduced in Mbed TLS 2.17.
Mbed TLS is gradually shifting from the legacy API to the PSA API. Mbed TLS 4.0 will be the first version where the PSA API is considered the main API, and large parts of the legacy API will be removed.
In Mbed TLS 4.0, the cryptography will be provided by a separate project [TF-PSA-Crypto](https://github.com/Mbed-TLS/TF-PSA-Crypto). For simplicity, in this document, we just refer to the whole as “Mbed TLS”.
### Document history
This document was originally written when preparing Mbed TLS 3.6. Mbed TLS 3.6 includes both PSA and legacy APIs covering largely overlapping ground. Many legacy APIs will be removed in Mbed TLS 4.0.
## Requirements
### Why mix APIs?
There is functionality that is tied to one API and is not directly available in the other API:
* Only PSA fully supports PSA accelerators and secure element integration.
* Only PSA supports isolating cryptographic material in a secure service.
* The legacy API has features that are not present (yet) in PSA, notably parsing and formatting asymmetric keys.
The legacy API can partially leverage PSA features via `MBEDTLS_USE_PSA_CRYPTO`, but this has limited scope.
In addition, many applications cannot be migrated in a single go. For large projects, it is impractical to rewrite a significant part of the code all at once. (For example, Mbed TLS itself will have taken more than 6 years to transition.) Projects that use one or more library in addition to Mbed TLS must follow the evolution of these libraries, each of which might have its own pace.
### Where mixing happens
Mbed TLS can be, and normally is, built with support for both APIs. Therefore no special effort is necessary to allow an application to use both APIs.
Special effort is necessary to use both APIs as part of the implementation of the same feature. From an informal analysis of typical application requirements, we identify four parts of the use of cryptography which can be provided by different APIs:
* Metadata manipulation: parsing and producing encrypted or signed files, finding mutually supported algorithms in a network protocol negotiation, etc.
* Key management: parsing, generating, deriving and formatting cryptographic keys.
* Data manipulation other than keys. In practice, most data formats within the scope of the legacy crypto APIs are trivial (ciphertexts, hashes, MACs, shared secrets). The one exception is ECDSA signatures.
* Cryptographic operations: hash, sign, encrypt, etc.
From this, we deduce the following requirements:
* Convert between PSA and legacy metadata.
* Creating a key with the legacy API and consuming it in the PSA API.
* Creating a key with the PSA API and consuming it in the legacy API.
* Manipulating data formats, other than keys, where the PSA API is lacking.
### Scope limitations
The goal of this document is to bridge the legacy API and the PSA API. The goal is not to provide a PSA way to do everything that is currently possible with the legacy API. The PSA API is less flexible in some regards, and extending it is out of scope in the present study.
With respect to the legacy API, we do not consider functionality of low-level modules for individual algorithms. Our focus is on applications that use high-level legacy crypto modules (md, cipher, pk) and need to combine that with uses of the PSA APIs.
## Gap analysis
The document [“Transitioning to the PSA API”](../../psa-transition.md) enumerates the public header files in Mbed TLS 3.4 and the API elements (especially enums and functions) that they provide, listing PSA equivalents where they exist. There are gaps in two cases:
* Where the PSA equivalents do not provide the same functionality. A typical example is parsing and formatting asymmetric keys.
* To convert between data representations used by legacy APIs and data representations used by PSA APIs.
Based on “[Where mixing happens](#where-mixing-happens)”, we focus the gap analysis on two topics: metadata and keys. This chapter explores the gaps in each family of cryptographic mechanisms.
### Generic metadata gaps
#### Need for error code conversion
Do we need public functions to convert between `MBEDTLS_ERR_xxx` error codes and `PSA_ERROR_xxx` error codes? We have such functions for internal use.
Mbed TLS needs these conversions because it has many functions that expose one API (legacy/API) but are implemented on top of the other API. Most applications would convert legacy and PSA error code to their own error codes, and converting between `MBEDTLS_ERR_xxx` error codes and `PSA_ERROR_xxx` is not particularly helpful for that. Application code might need such conversion functions when implementing an X.509 or TLS callback (returning `MBEDTLS_ERR_xxx`) on top of PSA functions, but this is a very limited use case.
Conclusion: no need for public error code conversion functions.
### Hash gap analysis
Hashes do not involve keys, and involves no nontrivial data format. Therefore the only gap is with metadata, namely specifying a hash algorithm.
Hashes are often used as building blocks for other mechanisms (HMAC, signatures, key derivation, etc.). Therefore metadata about hashes is relevant not only when calculating hashes, but also when performing many other cryptographic operations.
Gap: functions to convert between `psa_algorithm_t` hash algorithms and `mbedtls_md_type_t`. Such functions exist in Mbed TLS 3.5 (`mbedtls_md_psa_alg_from_type`, `mbedtls_md_type_from_psa_alg`) but they are declared only in private headers.
### MAC gap analysis
[TODO]
### Cipher and AEAD gap analysis
[TODO]
### Key derivation gap analysis
[TODO]
### Random generation gap analysis
[TODO]
### Asymmetric cryptography gap analysis
#### Asymmetric cryptography metadata
The legacy API only has generic support for two key types: RSA and ECC, via the pk module. ECC keys can also be further classified according to their curve. The legacy API also supports DHM (Diffie-Hellman-Merkle = FFDH: finite-field Diffie-Hellman) keys, but those are not integrated in the pk module.
An RSA or ECC key can potentially be used for different algorithms in the scope of the pk module:
* RSA: PKCS#1v1.5 signature, PSS signature, PKCS#1v1.5 encryption, OAEP encryption.
* ECC: ECDSA signature (randomized or deterministic), ECDH key agreement (via `mbedtls_pk_ec`).
ECC keys are also involved in EC-JPAKE, but this happens internally: the EC-JPAKE interface only needs one piece of metadata, namely, to identify a curve.
Since there is no algorithm that can be used with multiple types, and PSA keys have a policy that (for the most part) limits them to one algorithm, there does not seem to be a need to convert between legacy and PSA asymmetric key types on their own. The useful metadata conversions are:
* Selecting an **elliptic curve**.
This means converting between an `mbedtls_ecp_group_id` and a pair of `{psa_ecc_family_t; size_t}`.
This is fulfilled by `mbedtls_ecc_group_to_psa` and `mbedtls_ecc_group_from_psa`, which were introduced into the public API between Mbed TLS 3.5 and 3.6 ([#8664](https://github.com/Mbed-TLS/mbedtls/pull/8664)).
* Selecting A **DHM group**.
PSA only supports predefined groups, whereas legacy only supports ad hoc groups. An existing application referring to `MBEDTLS_DHM_RFC7919_FFDHExxx` values would need to refer to `PSA_DH_FAMILY_RFC7919`; an existing application using arbitrary groups cannot migrate to PSA.
* Simultaneously supporting **a key type and an algorithm**.
On the legacy side, this is an `mbedtls_pk_type_t` value and more. For ECDSA, the choice between randomized and deterministic is made at compile time. For RSA, the choice of encryption or signature algorithm is made either by configuring the underlying `mbedtls_rsa_context` or when calling the operation function.
On the PSA side, this is a `psa_key_type_t` value and an algorithm which is normally encoded as policy information in a `psa_key_attributes_t`. The algorithm is also needed in its own right when calling operation functions.
#### Using a legacy key pair or public key with PSA
There are several scenarios where an application has a legacy key pair or public key (`mbedtls_pk_context`) and needs to create a PSA key object (`psa_key_id_t`).
Reasons for first creating a legacy key object, where it's impossible or impractical to directly create a PSA key:
* A very common case where the input is a legacy key object is parsing. PSA does not (yet) have an equivalent of the `mbedtls_pk_parse_xxx` functions.
* The PSA key creation interface is less flexible in some cases. In particular, PSA RSA key generation does not (yet) allow choosing the public exponent.
* The pk object may be created by a part of the application (or a third-party library) that hasn't been migrated to the PSA API yet.
Reasons for needing a PSA key object:
* Using the key with third-party interface that takes a PSA key identifier as input. (Mbed TLS itself has a few TLS functions that take PSA key identifiers, but as of Mbed TLS 3.5, it is always possible to use a legacy key instead.)
* Benefiting from a PSA accelerator, or from PSA's world separation, even without `MBEDTLS_USE_PSA_CRYPTO`. (Not a priority scenario: we generally expect people to activate `MBEDTLS_USE_PSA_CRYPTO` at an early stage of their migration to PSA.)
Gap: a way to create a PSA key object from an `mbedtls_pk_context`. This partially exists in the form of `mbedtls_pk_wrap_as_opaque`, but it is not fully satisfactory, for reasons that are detailed in “[API to create a PSA key from a PK context](#api-to-create-a-psa-key-from-a-pk-context)” below.
#### Using a PSA key as a PK context
There are several scenarios where an application has a PSA key and needs to use it through an interface that wants an `mbedtls_pk_context` object. Typically, there is an existing key in the PSA key store (possibly in a secure element and non-exportable), and the key needs to be used in an interface that requires a `mbedtls_pk_context *` input, such as Mbed TLS's X.509 and TLS APIs or a similar third-party interface, or the `mbedtls_pk_write_xxx` interfaces which do not (yet) have PSA equivalents.
There is a function `mbedtls_pk_setup_opaque` that mostly does this. However, it has several limitations:
* It creates a PK key of type `MBEDTLS_PK_OPAQUE` that wraps the PSA key. This is good enough in some scenarios, but not others. For example, it's ok for pkwrite, because we've upgraded the pkwrite code to handle `MBEDTLS_PK_OPAQUE`. That doesn't help users of third-party libraries that haven't yet been upgraded.
* It ties the lifetime of the PK object to the PSA key, which is error-prone: if the PSA key is destroyed but the PK object isn't, there is no way to reliably detect any subsequent misuse of the PK object.
* It is only available under `MBEDTLS_USE_PSA_CRYPTO`. This is not a priority concern, since we generally expect people to activate `MBEDTLS_USE_PSA_CRYPTO` at an early stage of their migration to PSA. However, this function is useful to use specific PSA keys in X.509/TLS regardless of whether X.509/TLS use the PSA API for all cryptographic operations, so this is a wart in the current API.
It therefore appears that we need two ways to “convert” a PSA key to PK:
* Wrapping, which is what `mbedtls_pk_setup_opaque` does. This works for any PSA key but is limited by the key's lifetime and creates a PK object with limited functionality.
* Copying, which requires a new function. This requires an exportable key but creates a fully independent, fully functional PK object.
Gap: a way to copy a PSA key into a PK context. This can only be expected to work if the PSA key is exportable.
After some discussion, have not identified anything we want to change in the behavior of `mbedtls_pk_setup_opaque`. We only want to generalize it to non-`MBEDTLS_USE_PSA_CRYPTO` and to document it better.
#### Signature formats
The pk module uses signature formats intended for X.509. The PSA module uses the simplest sensible signature format.
* For RSA, the formats are the same.
* For ECDSA, PSA uses a fixed-size concatenation of (r,s), whereas X.509 and pk use an ASN.1 DER encoding of the sequence (r,s).
Gap: We need APIs to convert between these two formats. The conversion code already exists under the hood, but it's in pieces that can't be called directly.
There is a design choice here: do we provide conversions functions for ECDSA specifically, or do we provide conversion functions that take an algorithm as argument and just happen to be a no-op with RSA? One factor is plausible extensions. These conversions functions will remain useful in Mbed TLS 4.x and perhaps beyond. We will at least add EdDSA support, and its signature encoding is the fixed-size concatenation (r,s) even in X.509. We may well also add support for some post-quantum signatures, and their concrete format is still uncertain.
Given the uncertainty, it would be nice to provide a sufficiently generic interface to convert between the PSA and the pk signature format, parametrized by the algorithm. However, it is difficult to predict exactly what parameters are needed. For example, converting from an ASN.1 ECDSA signature to (r,s) requires the knowledge of the curve, or at least the curve's size. Therefore we are not going to add a generic function at this stage.
For ECDSA, there are two plausible APIs: follow the ASN.1/X.509 write/parse APIs, or present an ordinary input/output API. The ASN.1 APIs are the way they are to accommodate nested TLV structures. But ECDSA signatures do not appear nested in TLV structures in either TLS (there's just a signature field) or X.509 (the signature is inside a BITSTRING, not directly in a SEQUENCE). So there does not seem to be a need for an ASN.1-like API for the ASN.1 format, just the format conversion itself in a buffer that just contains the signature.
#### Asymmetric cryptography TODO
[TODO] Other gaps?
## New APIs
This section presents new APIs to implement based on the [gap analysis](#gap-analysis).
### General notes
Each action to implement a function entails:
* Implement the library function.
* Document it precisely, including error conditions.
* Unit-test it.
* Mention it where relevant in the PSA transition guide.
### Hash APIs
Based on the [gap analysis](#hash-gap-analysis):
[ACTION] [#8340](https://github.com/Mbed-TLS/mbedtls/issues/8340) Move `mbedtls_md_psa_alg_from_type` and `mbedtls_md_type_from_psa_alg` from `library/md_psa.h` to `include/mbedtls/md.h`.
### MAC APIs
[TODO]
### Cipher and AEAD APIs
[TODO]
### Key derivation APIs
[TODO]
### Random generation APIs
[TODO]
### Asymmetric cryptography APIs
#### Asymmetric cryptography metadata APIs
Based on the [gap analysis](#asymmetric-cryptography-metadata):
* No further work is needed about RSA specifically. The amount of metadata other than hashes is sufficiently small to be handled in ad hoc ways in applications, and hashes have [their own conversions](#hash-apis).
* No further work is needed about ECC specifically. We have just added adequate functions.
* No further work is needed about DHM specifically. There is no good way to translate the relevant information.
* [OPEN] Is there a decent way to convert between `mbedtls_pk_type_t` plus extra information, and `psa_key_type_t` plus policy information? The two APIs are different in crucial ways, with different splits between key type, policy information and operation algorithm.
Thinking so far: there isn't really a nice way to present this conversion. For a specific key, `mbedtls_pk_get_psa_attributes` and `mbedtls_pk_copy_from_psa` do the job.
#### API to create a PSA key from a PK context
Based on the [gap analysis](#using-a-legacy-key-pair-or-public-key-with-psa):
Given an `mbedtls_pk_context`, we want a function that creates a PSA key with the same key material and algorithm. “Same key material” is straightforward, but “same algorithm” is not, because a PK context has incomplete algorithm information. For example, there is no way to distinguish between an RSA key that is intended for signature or for encryption. Between algorithms of the same nature, there is no way to distinguish a key intended for PKCS#1v1.5 and one intended for PKCS#1v2.1 (OAEP/PSS): this is indicated in the underlying RSA context, but the indication there is only a default that can be overridden by calling `mbedtls_pk_{sign,verify}_ext`. Also there is no way to distinguish between `PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)` and `PSA_ALG_RSA_PKCS1V15_SIGN_RAW`: in the legacy interface, this is only determined when actually doing a signature/verification operation. Therefore the function that creates the PSA key needs extra information to indicate which algorithm to put in the key's policy.
When creating a PSA key, apart from the key material, the key is determined by attributes, which fall under three categories:
* Type and size. These are directly related to the key material and can be deduced from it if the key material is in a structured format, which is the case with an `mbedtls_pk_context` input.
* Policy. This includes the chosen algorithm, which as discussed above cannot be fully deduced from the `mbedtls_pk_context` object. Just choosing one algorithm is problematic because it doesn't allow implementation-specific extensions, such as Mbed TLS's enrollment algorithm. The intended usage flags cannot be deduced from the PK context either, but the conversion function could sensibly just enable all the relevant usage flags. Users who want a more restrictive usage can call `psa_copy_key` and `psa_destroy_key` to obtain a PSA key object with a more restrictive usage.
* Persistence and location. This is completely orthogonal to the information from the `mbedtls_pk_context` object. It is convenient, but not necessary, for the conversion function to allow customizing these aspects. If it doesn't, users can call the conversion function and then call `psa_copy_key` and `psa_destroy_key` to move the key to its desired location.
To allow the full flexibility around policies, and make the creation of a persistent key more convenient, the conversion function shall take a `const psa_key_attributes_t *` input, like all other functions that create a PSA key. In addition, there shall be a helper function to populate a `psa_key_attributes_t` with a sensible default. This lets the caller choose a more flexible, or just different usage policy, unlike the default-then-copy approach which only allows restricting the policy.
This is close to the existing function `mbedtls_pk_wrap_as_opaque`, but does not bake in the implementation-specific consideration that a PSA key has exactly two algorithms, and also allows the caller to benefit from default for the policy in more cases.
[ACTION] [#8708](https://github.com/Mbed-TLS/mbedtls/issues/8708) Implement `mbedtls_pk_get_psa_attributes` and `mbedtls_pk_import_into_psa` as described below. These functions are available whenever `MBEDTLS_PK_C` and `MBEDTLS_PSA_CRYPTO_CLIENT` are both defined. Deprecate `mbedtls_pk_wrap_as_opaque`.
```
int mbedtls_pk_get_psa_attributes(const mbedtls_pk_context *pk,
psa_key_usage_flags_t usage,
psa_key_attributes_t *attributes);
int mbedtls_pk_import_into_psa(const mbedtls_pk_context *pk,
const psa_key_attributes_t *attributes,
mbedtls_svc_key_id_t *key_id);
```
* `mbedtls_pk_get_psa_attributes` does not change the id/lifetime fields of the attributes (which indicate a volatile key by default).
* [OPEN] Or should it reset them to 0? Resetting is more convenient for the case where the pk key is a `MBEDTLS_PK_OPAQUE`. But that's an uncommon use case. It's probably less surprising if this function leaves the lifetime-related alone, since its job is to set the type-related and policy-related attributes.
* `mbedtls_pk_get_psa_attributes` sets the type and size based on what's in the pk context.
* The key type is a key pair if the context contains a private key and the indicated usage is a private-key usage. The key type is a public key if the context only contains a public key, in which case a private-key usage is an error.
* `mbedtls_pk_get_psa_attributes` sets the usage flags based on the `usage` parameter. It extends the usage to other usage that is possible:
* `EXPORT` and `COPY` are always set.
* If `SIGN_{HASH,MESSAGE}` is set then so is `VERIFY_{HASH,MESSAGE}`.
* If `DECRYPT` is set then so is `ENCRYPT`.
* It is an error if `usage` has more than one flag set, or has a usage that is incompatible with the key type.
* `mbedtls_pk_get_psa_attributes` sets the algorithm usage policy based on information in the key object and on `usage`.
* For an RSA key with the `MBEDTLS_RSA_PKCS_V15` padding mode, the algorithm policy is `PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH)` for a sign/verify usage, and `PSA_ALG_RSA_PKCS1V15_CRYPT` for an encrypt/decrypt usage.
* For an RSA key with the `MBEDTLS_RSA_PKCS_V21` padding mode, the algorithm policy is `PSA_ALG_RSA_PSS_ANY_SALT(PSA_ALG_ANY_HASH)` for a sign/verify usage, and `PSA_ALG_RSA_OAEP(hash)` for an encrypt/decrypt usage where `hash` is from the RSA key's parameters. (Note that `PSA_ALG_ANY_HASH` is only allowed in signature algorithms.)
* For an `MBEDTLS_PK_ECKEY` or `MBEDTLS_PK_ECDSA` with a sign/verify usage, the algorithm policy is `PSA_ALG_DETERMINISTIC_ECDSA` if `MBEDTLS_ECDSA_DETERMINISTIC` is enabled and `PSA_ALG_ECDSA` otherwise. In either case, the hash policy is `PSA_ALG_ANY_HASH`.
* For an `MBEDTLS_PK_ECKEY` or `MBEDTLS_PK_ECDKEY_DH` with the usage `PSA_KEY_USAGE_DERIVE`, the algorithm is `PSA_ALG_ECDH`.
* For a `MBEDTLS_PK_OPAQUE`, this function reads the attributes of the existing PK key and copies them (without overriding the lifetime and key identifier in `attributes`), then applies a public-key restriction if needed.
* Public-key restriction: if `usage` is a public-key usage, change the type to the corresponding public-key type, and remove private-key usage flags from the usage flags read from the existing key.
* `mbedtls_pk_import_into_psa` checks that the type field in the attributes is consistent with the content of the `mbedtls_pk_context` object (RSA/ECC, and availability of the private key).
* The key type can be a public key even if the private key is available.
* `mbedtls_pk_import_into_psa` does not need to check the bit-size in the attributes: `psa_import_key` will do enough checks.
* `mbedtls_pk_import_into_psa` does not check that the policy in the attributes is sensible. That's on the user.
#### API to copy a PSA key to a PK context
Based on the [gap analysis](#using-a-psa-key-as-a-pk-context):
[ACTION] [#8709](https://github.com/Mbed-TLS/mbedtls/issues/8709) Implement `mbedtls_pk_copy_from_psa` as described below.
```
int mbedtls_pk_copy_from_psa(mbedtls_svc_key_id_t key_id,
mbedtls_pk_context *pk);
```
* `pk` must be initialized, but not set up.
* It is an error if the key is neither a key pair nor a public key.
* It is an error if the key is not exportable.
* The resulting pk object has a transparent type, not `MBEDTLS_PK_OPAQUE`. That's `MBEDTLS_PK_RSA` for RSA keys (since pk objects don't use `MBEDTLS_PK_RSASSA_PSS` as a type), and `MBEDTLS_PK_ECKEY` for ECC keys (following the example of pkparse).
* Once this function returns, the pk object is completely independent of the PSA key.
* Calling `mbedtls_pk_sign`, `mbedtls_pk_verify`, `mbedtls_pk_encrypt`, `mbedtls_pk_decrypt` on the resulting pk context will perform an algorithm that is compatible with the PSA key's primary algorithm policy (`psa_get_key_algorithm`) if that is a matching operation type (sign/verify, encrypt/decrypt), but with no restriction on the hash (as if the policy had `PSA_ALG_ANY_HASH` instead of a specific hash, and with `PSA_ALG_RSA_PKCS1V15_SIGN_RAW` merged with `PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)`).
* For ECDSA, the choice of deterministic vs randomized will be based on the compile-time setting `MBEDTLS_ECDSA_DETERMINISTIC`, like `mbedtls_pk_sign` today.
* For an RSA key, the output key will allow both encrypt/decrypt and sign/verify regardless of the original key's policy. The original key's policy determines the output key's padding mode.
* The primary intent of this requirement is to allow an application to switch to PSA for creating the key material (for example to benefit from a PSA accelerator driver, or to start using a secure element), without modifying the code that consumes the key. For RSA keys, the PSA primary algorithm policy is how one conveys the same information as RSA key padding information in the legacy API. Convey this in the documentation.
#### API to create a PK object that wraps a PSA key
Based on the [gap analysis](#using-a-psa-key-as-a-pk-context):
[ACTION] [#8712](https://github.com/Mbed-TLS/mbedtls/issues/8712) Clarify the documentation of `mbedtls_pk_setup_opaque` regarding which algorithms the resulting key will perform with `mbedtls_pk_sign`, `mbedtls_pk_verify`, `mbedtls_pk_encrypt`, `mbedtls_pk_decrypt`.
[ACTION] [#8710](https://github.com/Mbed-TLS/mbedtls/issues/8710) Provide `mbedtls_pk_setup_opaque` whenever `MBEDTLS_PSA_CRYPTO_CLIENT` is enabled, not just when `MBEDTLS_USE_PSA_CRYPTO` is enabled. This is nice-to-have, not critical. Update `use-psa-crypto.md` accordingly.
[OPEN] What about `mbedtls_pk_sign_ext` and `mbedtls_pk_verify_ext`?
#### API to convert between signature formats
Based on the [gap analysis](#signature-formats):
[ACTION] [#7765](https://github.com/Mbed-TLS/mbedtls/issues/7765) Implement `mbedtls_ecdsa_raw_to_der` and `mbedtls_ecdsa_der_to_raw` as described below.
```
int mbedtls_ecdsa_raw_to_der(size_t bits,
const unsigned char *raw, size_t raw_len,
unsigned char *der, size_t der_size, size_t *der_len);
int mbedtls_ecdsa_der_to_raw(size_t bits,
const unsigned char *der, size_t der_len,
unsigned char *raw, size_t raw_size, size_t *raw_len);
```
* These functions convert between the signature format used by `mbedtls_pk_{sign,verify}{,_ext}` and the signature format used by `psa_{sign,verify}_{hash,message}`.
* The input and output buffers can overlap.
* The `bits` parameter is necessary in the DER-to-raw direction because the DER format lacks leading zeros, so something else needs to convey the size of (r,s). The `bits` parameter is redundant in the raw-to-DER direction, but we have it anyway because [it helps catch errors](https://github.com/Mbed-TLS/mbedtls/pull/8681#discussion_r1445980971), and it isn't a burden on the caller because the information is readily available in practice.
* Should these functions rely on the ASN.1 module? We experimented [calling ASN.1 functions](https://github.com/Mbed-TLS/mbedtls/pull/8681), [reimplementing simpler ASN.1 functions](https://github.com/Mbed-TLS/mbedtls/pull/8696), and [providing the functions from the ASN.1 module](https://github.com/Mbed-TLS/mbedtls/pull/8703). Providing the functions from the ASN.1 module [won on a compromise of code size and simplicity](https://github.com/Mbed-TLS/mbedtls/issues/7765#issuecomment-1893670015).

View File

@@ -0,0 +1,337 @@
This document lists current limitations of the PSA Crypto API (as of version
1.1) that may impact our ability to (1) use it for all crypto operations in
TLS and X.509 and (2) support isolation of all long-term secrets in TLS (that
is, goals G1 and G2 in [strategy.md](strategy.md) in the same directory).
This is supposed to be a complete list, based on a exhaustive review of crypto
operations done in TLS and X.509 code, but of course it's still possible that
subtle-but-important issues have been missed. The only way to be really sure
is, of course, to actually do the migration work.
Limitations relevant for G1 (performing crypto operations)
==========================================================
Restartable (aka interruptible) ECC operations
----------------------------------------------
Support for interruptible ECDSA sign/verify was added to PSA in Mbed TLS 3.4.
However, support for interruptible ECDH is not present yet. Also, PK, X.509 and
TLS have not yet been adapted to take advantage of the new PSA APIs. See:
- <https://github.com/Mbed-TLS/mbedtls/issues/7292>;
- <https://github.com/Mbed-TLS/mbedtls/issues/7293>;
- <https://github.com/Mbed-TLS/mbedtls/issues/7294>.
Currently, when `MBEDTLS_USE_PSA_CRYPTO` and `MBEDTLS_ECP_RESTARTABLE` are
both enabled, some operations that should be restartable are not (ECDH in TLS
1.2 clients using ECDHE-ECDSA), as they are using PSA instead, and some
operations that should use PSA do not (signature generation & verification) as
they use the legacy API instead, in order to get restartable behaviour.
Things that are in the API but not implemented yet
--------------------------------------------------
PSA Crypto has an API for FFDH, but it's not implemented in Mbed TLS yet.
(Regarding FFDH, see the next section as well.) See issue [3261][ffdh] on
github.
[ffdh]: https://github.com/Mbed-TLS/mbedtls/issues/3261
Arbitrary parameters for FFDH
-----------------------------
(See also the first paragraph in the previous section.)
Currently, the PSA Crypto API can only perform FFDH with a limited set of
well-known parameters (some of them defined in the spec, but implementations
are free to extend that set).
TLS 1.2 (and earlier) on the other hand have the server send explicit
parameters (P and G) in its ServerKeyExchange message. This has been found to
be suboptimal for security, as it is prohibitively hard for the client to
verify the strength of these parameters. This led to the development of RFC
7919 which allows use of named groups in TLS 1.2 - however as this is only an
extension, servers can still send custom parameters if they don't support the
extension.
In TLS 1.3 the situation will be simpler: named groups are the only
option, so the current PSA Crypto API is a good match for that. (Not
coincidentally, all the groups used by RFC 7919 and TLS 1.3 are included
in the PSA specification.)
There are several options here:
1. Implement support for custom FFDH parameters in PSA Crypto: this would pose
non-trivial API design problem, but most importantly seems backwards, as
the crypto community is moving away from custom FFDH parameters. (Could be
done any time.)
2. Drop the DHE-RSA and DHE-PSK key exchanges in TLS 1.2 when moving to PSA.
(For people who want some algorithmic variety in case ECC collapses, FFDH
would still be available in TLS 1.3, just not in 1.2.) (Can only be done in
4.0 or another major version.)
3. Variant of the precedent: only drop client-side support. Server-side is
easy to support in terms of API/protocol, as the server picks the
parameters: we just need remove the existing `mbedtls_ssl_conf_dh_param_xxx()`
APIs and tell people to use `mbedtls_ssl_conf_groups()` instead. (Can only be
done in 4.0 or another major version.)
4. Implement RFC 7919, support DHE-RSA and DHE-PSK only in conjunction with it
when moving to PSA. Server-side would work as above; unfortunately
client-side the only option is to offer named groups and break the handshake
if the server didn't take on our offer. This is not fully satisfying, but is
perhaps the least unsatisfying option in terms of result; it's also probably
the one that requires the most work, but it would deliver value beyond PSA
migration by implementing RFC 7919. (Implementing RFC 7919 could be done any
time; making it mandatory can only be done in 4.0 or another major version.)
As of early 2023, the plan is to go with option 2 in Mbed TLS 4.0, which has
been announced on the mailing-list and got no push-back, see
<https://github.com/Mbed-TLS/mbedtls/issues/5278>.
RSA-PSS parameters
------------------
RSA-PSS signatures are defined by PKCS#1 v2, re-published as RFC 8017
(previously RFC 3447).
As standardized, the signature scheme takes several parameters, in addition to
the hash algorithm potentially used to hash the message being signed:
- a hash algorithm used for the encoding function
- a mask generation function
- most commonly MGF1, which in turn is parametrized by a hash algorithm
- a salt length
- a trailer field - the value is fixed to 0xBC by PKCS#1 v2.1, but was left
configurable in the original scheme; 0xBC is used everywhere in practice.
Both the existing `mbedtls_` API and the PSA API support only MGF1 as the
generation function (and only 0xBC as the trailer field), but there are
discrepancies in handling the salt length and which of the various hash
algorithms can differ from each other.
### API comparison
- RSA:
- signature: `mbedtls_rsa_rsassa_pss_sign()`
- message hashed externally
- encoding hash = MGF1 hash (from context, or argument = message hash)
- salt length: always using the maximum legal value
- signature: `mbedtls_rsa_rsassa_pss_sign_ext()`
- message hashed externally
- encoding hash = MGF1 hash (from context, or argument = message hash)
- salt length: specified explicitly
- verification: `mbedtls_rsassa_pss_verify()`
- message hashed externally
- encoding hash = MGF1 hash (from context, or argument = message hash)
- salt length: any valid length accepted
- verification: `mbedtls_rsassa_pss_verify_ext()`
- message hashed externally
- encoding hash = MGF1 hash from dedicated argument
- expected salt length: specified explicitly, can specify "ANY"
- PK:
- signature: not supported
- verification: `mbedtls_pk_verify_ext()`
- message hashed externally
- encoding hash = MGF1 hash, specified explicitly
- expected salt length: specified explicitly, can specify "ANY"
- PSA:
- algorithm specification:
- hash alg used for message hashing, encoding and MGF1
- salt length can be either "standard" (<= hashlen, see note) or "any"
- signature generation:
- salt length: always <= hashlen (see note) and random salt
- verification:
- salt length: either <= hashlen (see note), or any depending on algorithm
Note: above, "<= hashlen" means that hashlen is used if possible, but if it
doesn't fit because the key is too short, then the maximum length that fits is
used.
The RSA/PK API is in principle more flexible than the PSA Crypto API. The
following sub-sections study whether and how this matters in practice.
### Use in X.509
RFC 4055 Section 3.1 defines the encoding of RSA-PSS that's used in X.509.
It allows independently specifying the message hash (also used for encoding
hash), the MGF (and its hash if MGF1 is used), and the salt length (plus an
extra parameter "trailer field" that doesn't vary in practice"). These can be
encoded as part of the key, and of the signature. If both encoding are
presents, all values must match except possibly for the salt length, where the
value from the signature parameters is used.
In Mbed TLS, RSA-PSS parameters can be parsed and displayed for various
objects (certificates, CRLs, CSRs). During parsing, the following properties
are enforced:
- the extra "trailer field" parameter must have its default value
- the mask generation function is MGF1
- encoding hash = message hashing algorithm (may differ from MGF1 hash)
When it comes to cryptographic operations, only two things are supported:
- verifying the signature on a certificate from its parent;
- verifying the signature on a CRL from the issuing CA.
The verification is done using `mbedtls_pk_verify_ext()`.
Note: since X.509 parsing ensures that message hash = encoding hash, and
`mbedtls_pk_verify_ext()` uses encoding hash = mgf1 hash, it looks like all
three hash algorithms must be equal, which would be good news as it would
match a limitation of the PSA API.
It is unclear what parameters people use in practice. It looks like by default
OpenSSL picks saltlen = keylen - hashlen - 2 (tested with openssl 1.1.1f).
The `certtool` command provided by GnuTLS seems to be picking saltlen = hashlen
by default (tested with GnuTLS 3.6.13). FIPS 186-4 requires 0 <= saltlen <=
hashlen.
### Use in TLS
In TLS 1.2 (or lower), RSA-PSS signatures are never used, except via X.509.
In TLS 1.3, RSA-PSS signatures can be used directly in the protocol (in
addition to indirect use via X.509). It has two sets of three signature
algorithm identifiers (for SHA-256, SHA-384 and SHA-512), depending of what
the OID of the public key is (rsaEncryption or RSASSA-PSS).
In both cases, it specifies that:
- the mask generation function is MGF1
- all three hashes are equal
- the length of the salt MUST be equal to the length of the digest algorithm
When signing, the salt length picked by PSA is the one required by TLS 1.3
(unless the key is unreasonably small).
When verifying signatures, PSA will by default enforce the salt len is the one
required by TLS 1.3.
### Current testing - X509
All test files use the default trailer field of 0xBC, as enforced by our
parser. (There's a negative test for that using the
`x509_parse_rsassa_pss_params` test function and hex data.)
Files with "bad" in the name are expected to be invalid and rejected in tests.
**Test certificates:**
server9-bad-mgfhash.crt (announcing mgf1(sha224), signed with another mgf)
Hash Algorithm: sha256
Mask Algorithm: mgf1 with sha224
Salt Length: 0xDE
server9-bad-saltlen.crt (announcing saltlen = 0xDE, signed with another len)
Hash Algorithm: sha256
Mask Algorithm: mgf1 with sha256
Salt Length: 0xDE
server9-badsign.crt (one bit flipped in the signature)
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0xEA
server9-defaults.crt
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0x14 (default)
server9-sha224.crt
Hash Algorithm: sha224
Mask Algorithm: mgf1 with sha224
Salt Length: 0xE2
server9-sha256.crt
Hash Algorithm: sha256
Mask Algorithm: mgf1 with sha256
Salt Length: 0xDE
server9-sha384.crt
Hash Algorithm: sha384
Mask Algorithm: mgf1 with sha384
Salt Length: 0xCE
server9-sha512.crt
Hash Algorithm: sha512
Mask Algorithm: mgf1 with sha512
Salt Length: 0xBE
server9-with-ca.crt
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0xEA
server9.crt
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0xEA
These certificates are signed with a 2048-bit key. It appears that they are
all using saltlen = keylen - hashlen - 2, except for server9-defaults which is
using saltlen = hashlen.
**Test CRLs:**
crl-rsa-pss-sha1-badsign.pem
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0xEA
crl-rsa-pss-sha1.pem
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0xEA
crl-rsa-pss-sha224.pem
Hash Algorithm: sha224
Mask Algorithm: mgf1 with sha224
Salt Length: 0xE2
crl-rsa-pss-sha256.pem
Hash Algorithm: sha256
Mask Algorithm: mgf1 with sha256
Salt Length: 0xDE
crl-rsa-pss-sha384.pem
Hash Algorithm: sha384
Mask Algorithm: mgf1 with sha384
Salt Length: 0xCE
crl-rsa-pss-sha512.pem
Hash Algorithm: sha512
Mask Algorithm: mgf1 with sha512
Salt Length: 0xBE
These CRLs are signed with a 2048-bit key. It appears that they are
all using saltlen = keylen - hashlen - 2.
**Test CSRs:**
server9.req.sha1
Hash Algorithm: sha1 (default)
Mask Algorithm: mgf1 with sha1 (default)
Salt Length: 0x6A
server9.req.sha224
Hash Algorithm: sha224
Mask Algorithm: mgf1 with sha224
Salt Length: 0x62
server9.req.sha256
Hash Algorithm: sha256
Mask Algorithm: mgf1 with sha256
Salt Length: 0x5E
server9.req.sha384
Hash Algorithm: sha384
Mask Algorithm: mgf1 with sha384
Salt Length: 0x4E
server9.req.sha512
Hash Algorithm: sha512
Mask Algorithm: mgf1 with sha512
Salt Length: 0x3E
These CSRs are signed with a 2048-bit key. It appears that they are
all using saltlen = keylen - hashlen - 2.
### Possible courses of action
There's no question about what to do with TLS (any version); the only question
is about X.509 signature verification. Options include:
1. Doing all verifications with `PSA_ALG_RSA_PSS_ANY_SALT` - while this
wouldn't cause a concrete security issue, this would be non-compliant.
2. Doing verifications with `PSA_ALG_RSA_PSS` when we're lucky and the encoded
saltlen happens to match hashlen, and falling back to `ANY_SALT` otherwise.
Same issue as with the previous point, except more contained.
3. Reject all certificates with saltlen != hashlen. This includes all
certificates generated with OpenSSL using the default parameters, so it's
probably not acceptable.
4. Request an extension to the PSA Crypto API and use one of the above options
in the meantime. Such an extension seems inconvenient and not motivated by
strong security arguments, so it's unclear whether it would be accepted.
Since Mbed TLS 3.4, option 1 is implemented.
Limitations relevant for G2 (isolation of long-term secrets)
============================================================
Currently none.

View File

@@ -0,0 +1,486 @@
This document explains the strategy that was used so far in starting the
migration to PSA Crypto and mentions future perspectives and open questions.
Goals
=====
Several benefits are expected from migrating to PSA Crypto:
G1. Use PSA Crypto drivers when available.
G2. Allow isolation of long-term secrets (for example, private keys).
G3. Allow isolation of short-term secrets (for example, TLS session keys).
G4. Have a clean, unified API for Crypto (retire the legacy API).
G5. Code size: compile out our implementation when a driver is available.
As of Mbed TLS 3.2, most of (G1) and all of (G2) is implemented when
`MBEDTLS_USE_PSA_CRYPTO` is enabled. For (G2) to take effect, the application
needs to be changed to use new APIs. For a more detailed account of what's
implemented, see `docs/use-psa-crypto.md`, where new APIs are about (G2), and
internal changes implement (G1).
As of early 2023, work towards G5 is in progress: Mbed TLS 3.3 and 3.4 saw
some improvements in this area, and more will be coming in future releases.
Generally speaking, the numbering above doesn't mean that each goal requires
the preceding ones to be completed.
Compile-time options
====================
We currently have a few compile-time options that are relevant to the migration:
- `MBEDTLS_PSA_CRYPTO_C` - enabled by default, controls the presence of the PSA
Crypto APIs.
- `MBEDTLS_USE_PSA_CRYPTO` - disabled by default (enabled in "full" config),
controls usage of PSA Crypto APIs to perform operations in X.509 and TLS
(G1 above), as well as the availability of some new APIs (G2 above).
- `PSA_CRYPTO_CONFIG` - disabled by default, supports builds with drivers and
without the corresponding software implementation (G5 above).
The reasons why `MBEDTLS_USE_PSA_CRYPTO` is optional and disabled by default
are:
- it's not fully compatible with `MBEDTLS_ECP_RESTARTABLE`: you can enable
both, but then you won't get the full effect of RESTARTBLE (see the
documentation of this option in `mbedtls_config.h`);
- to avoid a hard/default dependency of TLS, X.509 and PK on
`MBEDTLS_PSA_CRYPTO_C`, for backward compatibility reasons:
- When `MBEDTLS_PSA_CRYPTO_C` is enabled and used, applications need to call
`psa_crypto_init()` before TLS/X.509 uses PSA functions. (This prevents us
from even enabling the option by default.)
- `MBEDTLS_PSA_CRYPTO_C` has a hard dependency on `MBEDTLS_ENTROPY_C ||
MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` but it's
currently possible to compile TLS and X.509 without any of the options.
Also, we can't just auto-enable `MBEDTLS_ENTROPY_C` as it doesn't build
out of the box on all platforms, and even less
`MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` as it requires a user-provided RNG
function.
The downside of this approach is that until we are able to make
`MBDEDTLS_USE_PSA_CRYPTO` non-optional (always enabled), we have to maintain
two versions of some parts of the code: one using PSA, the other using the
legacy APIs. However, see next section for strategies that can lower that
cost. The rest of this section explains the reasons for the
incompatibilities mentioned above.
At the time of writing (early 2022) it is unclear what could be done about the
backward compatibility issues, and in particular if the cost of implementing
solutions to these problems would be higher or lower than the cost of
maintaining dual code paths until the next major version. (Note: these
solutions would probably also solve other problems at the same time.)
### `MBEDTLS_ECP_RESTARTABLE`
Currently this option controls not only the presence of restartable APIs in
the crypto library, but also their use in the TLS and X.509 layers. Since PSA
Crypto does not support restartable operations, there's a clear conflict: the
TLS and X.509 layers can't both use only PSA APIs and get restartable
behaviour.
Support for restartable (aka interruptible) ECDSA sign/verify operation was
added to PSA in Mbed TLS 3.4, but support for ECDH is not present yet.
It will then require follow-up work to make use of the new PSA APIs in
PK/X.509/TLS in all places where we currently allow restartable operations.
### Backward compatibility issues with making `MBEDTLS_USE_PSA_CRYPTO` always on
1. Existing applications may not be calling `psa_crypto_init()` before using
TLS, X.509 or PK. We can try to work around that by calling (the relevant
part of) it ourselves under the hood as needed, but that would likely require
splitting init between the parts that can fail and the parts that can't (see
<https://github.com/ARM-software/psa-crypto-api/pull/536> for that).
2. It's currently not possible to enable `MBEDTLS_PSA_CRYPTO_C` in
configurations that don't have `MBEDTLS_ENTROPY_C`, and we can't just
auto-enable the latter, as it won't build or work out of the box on all
platforms. There are two kinds of things we'd need to do if we want to work
around that:
1. Make it possible to enable the parts of PSA Crypto that don't require an
RNG (typically, public key operations, symmetric crypto, some key
management functions (destroy etc)) in configurations that don't have
`ENTROPY_C`. This requires going through the PSA code base to adjust
dependencies. Risk: there may be annoying dependencies, some of which may be
surprising.
2. For operations that require an RNG, provide an alternative function
accepting an explicit `f_rng` parameter (see #5238), that would be
available in entropy-less builds. (Then code using those functions still needs
to have one version using it, for entropy-less builds, and one version using
the standard function, for driver support in build with entropy.)
See <https://github.com/Mbed-TLS/mbedtls/issues/5156>.
Taking advantage of the existing abstractions layers - or not
=============================================================
The Crypto library in Mbed TLS currently has 3 abstraction layers that offer
algorithm-agnostic APIs for a class of algorithms:
- MD for messages digests aka hashes (including HMAC)
- Cipher for symmetric ciphers (included AEAD)
- PK for asymmetric (aka public-key) cryptography (excluding key exchange)
Note: key exchange (FFDH, ECDH) is not covered by an abstraction layer.
These abstraction layers typically provide, in addition to the API for crypto
operations, types and numerical identifiers for algorithms (for
example `mbedtls_cipher_mode_t` and its values). The
current strategy is to keep using those identifiers in most of the code, in
particular in existing structures and public APIs, even when
`MBEDTLS_USE_PSA_CRYPTO` is enabled. (This is not an issue for G1, G2, G3
above, and is only potentially relevant for G4.)
The are multiple strategies that can be used regarding the place of those
layers in the migration to PSA.
Silently call to PSA from the abstraction layer
-----------------------------------------------
- Provide a new definition (conditionally on `USE_PSA_CRYPTO`) of wrapper
functions in the abstraction layer, that calls PSA instead of the legacy
crypto API.
- Upside: changes contained to a single place, no need to change TLS or X.509
code anywhere.
- Downside: tricky to implement if the PSA implementation is currently done on
top of that layer (dependency loop).
This strategy is currently (early 2023) used for all operations in the PK
layer; the MD layer uses a variant where it dispatches to PSA if a driver is
available and the driver subsystem has been initialized, regardless of whether
`USE_PSA_CRYPTO` is enabled; see `md-cipher-dispatch.md` in the same directory
for details.
This strategy is not very well suited to the Cipher layer, as the PSA
implementation is currently done on top of that layer.
This strategy will probably be used for some time for the PK layer, while we
figure out what the future of that layer is: parts of it (parse/write, ECDSA
signatures in the format that X.509 & TLS want) are not covered by PSA, so
they will need to keep existing in some way. (Also, the PK layer is a good
place for dispatching to either PSA or `mbedtls_xxx_restartable` while that
part is not covered by PSA yet, if we decide to do that.)
Replace calls for each operation
--------------------------------
- For every operation that's done through this layer in TLS or X.509, just
replace function call with calls to PSA (conditionally on `USE_PSA_CRYPTO`)
- Upside: conceptually simple, and if the PSA implementation is currently done
on top of that layer, avoids concerns about dependency loops.
- Upside: opens the door to building TLS/X.509 without that layer, saving some
code size.
- Downside: TLS/X.509 code has to be done for each operation.
This strategy is currently (early 2023) used for the MD layer and the Cipher
layer in X.509 and TLS. Crypto modules however always call to MD which may
then dispatch to PSA, see `md-cipher-dispatch.md`.
Opt-in use of PSA from the abstraction layer
--------------------------------------------
- Provide a new way to set up a context that causes operations on that context
to be done via PSA.
- Upside: changes mostly contained in one place, TLS/X.509 code only needs to
be changed when setting up the context, but not when using it. In
particular, no changes to/duplication of existing public APIs that expect a
key to be passed as a context of this layer (eg, `mbedtls_pk_context`).
- Upside: avoids dependency loop when PSA implemented on top of that layer.
- Downside: when the context is typically set up by the application, requires
changes in application code.
This strategy is not useful when no context is used, for example with the
one-shot function `mbedtls_md()`.
There are two variants of this strategy: one where using the new setup
function also allows for key isolation (the key is only held by PSA,
supporting both G1 and G2 in that area), and one without isolation (the key is
still stored outside of PSA most of the time, supporting only G1).
This strategy, with support for key isolation, is currently (early 2022) used for
private-key operations in the PK layer - see `mbedtls_pk_setup_opaque()`. This
allows use of PSA-held private ECDSA keys in TLS and X.509 with no change to
the TLS/X.509 code, but a contained change in the application.
This strategy, without key isolation, was also previously used (until 3.1
included) in the Cipher layer - see `mbedtls_cipher_setup_psa()`. This allowed
use of PSA for cipher operations in TLS with no change to the application
code, and a contained change in TLS code. (It only supported a subset of
ciphers.)
Note: for private key operations in the PK layer, both the "silent" and the
"opt-in" strategy can apply, and can complement each other, as one provides
support for key isolation, but at the (unavoidable) code of change in
application code, while the other requires no application change to get
support for drivers, but fails to provide isolation support.
Summary
-------
Strategies currently (early 2022) used with each abstraction layer:
- PK (for G1): silently call PSA
- PK (for G2): opt-in use of PSA (new key type)
- Cipher (G1): replace calls at each call site
- MD (G1, X.509 and TLS): replace calls at each call site (depending on
`USE_PSA_CRYPTO`)
- MD (G5): silently call PSA when a driver is available, see
`md-cipher-dispatch.md`.
Supporting builds with drivers without the software implementation
==================================================================
This section presents a plan towards G5: save code size by compiling out our
software implementation when a driver is available.
Let's expand a bit on the definition of the goal: in such a configuration
(driver used, software implementation and abstraction layer compiled out),
we want:
a. the library to build in a reasonably-complete configuration,
b. with all tests passing,
c. and no more tests skipped than the same configuration with software
implementation.
Criterion (c) ensures not only test coverage, but that driver-based builds are
at feature parity with software-based builds.
We can roughly divide the work needed to get there in the following steps:
0. Have a working driver interface for the algorithms we want to replace.
1. Have users of these algorithms call to PSA or an abstraction layer than can
dispatch to PSA, but not the low-level legacy API, for all operations.
(This is G1, and for PK, X.509 and TLS this is controlled by
`MBEDTLS_USE_PSA_CRYPTO`.) This needs to be done in the library and tests.
2. Have users of these algorithms not depend on the legacy API for information
management (getting a size for a given algorithm, etc.)
3. Adapt compile-time guards used to query availability of a given algorithm;
this needs to be done in the library (for crypto operations and data) and
tests.
Note: the first two steps enable use of drivers, but not by themselves removal
of the software implementation.
Note: the fact that step 1 is not achieved for all of libmbedcrypto (see
below) is the reason why criterion (a) has "a reasonably-complete
configuration", to allow working around internal crypto dependencies when
working on other parts such as X.509 and TLS - for example, a configuration
without RSA PKCS#1 v2.1 still allows reasonable use of X.509 and TLS.
Note: this is a conceptual division that will sometimes translate to how the
work is divided into PRs, sometimes not. For example, in situations where it's
not possible to achieve good test coverage at the end of step 1 or step 2, it
is preferable to group with the next step(s) in the same PR until good test
coverage can be reached.
**Status as of end of March 2023 (shortly after 3.4):**
- Step 0 is achieved for most algorithms, with only a few gaps remaining.
- Step 1 is achieved for most of PK, X.509, and TLS when
`MBEDTLS_USE_PSA_CRYPTO` is enabled with only a few gaps remaining (see
docs/use-psa-crypto.md).
- Step 1 is achieved for the crypto library regarding hashes: everything uses
MD (not low-level hash APIs), which then dispatches to PSA if applicable.
- Step 1 is not achieved for all of the crypto library when it come to
ciphers. For example,`ctr_drbg.c` calls the legacy API `mbedtls_aes`.
- Step 2 is achieved for most of X.509 and TLS (same gaps as step 1) when
`MBEDTLS_USE_PSA_CRYPTO` is enabled.
- Step 3 is done for hashes and top-level ECC modules (ECDSA, ECDH, ECJPAKE).
**Strategy for step 1:**
Regarding PK, X.509, and TLS, this is mostly achieved with only a few gaps.
(The strategy was outlined in the previous section.)
Regarding libmbedcrypto:
- for hashes and ciphers, see `md-cipher-dispatch.md` in the same directory;
- for ECC, we have no internal uses of the top-level algorithms (ECDSA, ECDH,
ECJPAKE), however they all depend on `ECP_C` which in turn depends on
`BIGNUM_C`. So, direct calls from TLS, X.509 and PK to ECP and Bignum will
need to be replaced; see <https://github.com/Mbed-TLS/mbedtls/issues/6839> and
linked issues for a summary of intermediate steps and open points.
**Strategy for step 2:**
The most satisfying situation here is when we can just use the PSA Crypto API
for information management as well. However sometimes it may not be
convenient, for example in parts of the code that accept old-style identifiers
(such as `mbedtls_md_type_t`) in their API and can't assume PSA to be
compiled in (such as `rsa.c`).
When using an existing abstraction layer such as MD, it can provide
information management functions. In other cases, information that was in a
low-level module but logically belongs in a higher-level module can be moved
to that module (for example, TLS identifiers of curves and there conversion
to/from PSA or legacy identifiers belongs in TLS, not `ecp.c`).
**Strategy for step 3:**
There are currently two (complementary) ways for crypto-using code to check if a
particular algorithm is supported: using `MBEDTLS_xxx` macros, and using
`PSA_WANT_xxx` macros. For example, PSA-based code that want to use SHA-256
will check for `PSA_WANT_ALG_SHA_256`, while legacy-based code that wants to
use SHA-256 will check for `MBEDTLS_SHA256_C` if using the `mbedtls_sha256`
API, or for `MBEDTLS_MD_C && MBEDTLS_SHA256_C` if using the `mbedtls_md` API.
Code that obeys `MBEDTLS_USE_PSA_CRYPTO` will want to use one of the two
dependencies above depending on whether `MBEDTLS_USE_PSA_CRYPTO` is defined:
if it is, the code want the algorithm available in PSA, otherwise, it wants it
available via the legacy API(s) is it using (MD and/or low-level).
As much as possible, we're trying to create for each algorithm a single new
macro that can be used to express dependencies everywhere (except pure PSA
code that should always use `PSA_WANT`). For example, for hashes this is the
`MBEDTLS_MD_CAN_xxx` family. For ECC algorithms, we have similar
`MBEDTLS_PK_CAN_xxx` macros.
Note that in order to achieve that goal, even for code that obeys
`USE_PSA_CRYPTO`, it is useful to impose that all algorithms that are
available via the legacy APIs are also available via PSA.
Executing step 3 will mostly consist of using the right dependency macros in
the right places (once the previous steps are done).
**Note on testing**
Since supporting driver-only builds is not about adding features, but about
supporting existing features in new types of builds, testing will not involve
adding cases to the test suites, but instead adding new components in `all.sh`
that build and run tests in newly-supported configurations. For example, if
we're making some part of the library work with hashes provided only by
drivers when `MBEDTLS_USE_PSA_CRYPTO` is defined, there should be a place in
`all.sh` that builds and run tests in such a configuration.
There is however a risk, especially in step 3 where we change how dependencies
are expressed (sometimes in bulk), to get things wrong in a way that would
result in more tests being skipped, which is easy to miss. Care must be
taken to ensure this does not happen. The following criteria can be used:
1. The sets of tests skipped in the default config and the full config must be
the same before and after the PR that implements step 3. This is tested
manually for each PR that changes dependency declarations by using the script
`outcome-analysis.sh` in the present directory.
2. The set of tests skipped in the driver-only build is the same as in an
equivalent software-based configuration. This is tested automatically by the
CI in the "Results analysis" stage, by running
`tests/scripts/analyze_outcomes.py`. See the
`analyze_driver_vs_reference_xxx` actions in the script and the comments above
their declaration for how to do that locally.
Migrating away from the legacy API
==================================
This section briefly introduces questions and possible plans towards G4,
mainly as they relate to choices in previous stages.
The role of the PK/Cipher/MD APIs in user migration
---------------------------------------------------
We're currently taking advantage of the existing PK layer in order
to reduce the number of places where library code needs to be changed. It's
only natural to consider using the same strategy (with the PK, MD and Cipher
layers) for facilitating migration of application code.
Note: a necessary first step for that would be to make sure PSA is no longer
implemented of top of the concerned layers
### Zero-cost compatibility layer?
The most favourable case is if we can have a zero-cost abstraction (no
runtime, RAM usage or code size penalty), for example just a bunch of
`#define`s, essentially mapping `mbedtls_` APIs to their `psa_` equivalent.
Unfortunately that's unlikely to fully work. For example, the MD layer uses the
same context type for hashes and HMACs, while the PSA API (rightfully) has
distinct operation types. Similarly, the Cipher layer uses the same context
type for unauthenticated and AEAD ciphers, which again the PSA API
distinguishes.
It is unclear how much value, if any, a zero-cost compatibility layer that's
incomplete (for example, for MD covering only hashes, or for Cipher covering
only AEAD) or differs significantly from the existing API (for example,
introducing new context types) would provide to users.
### Low-cost compatibility layers?
Another possibility is to keep most or all of the existing API for the PK, MD
and Cipher layers, implemented on top of PSA, aiming for the lowest possible
cost. For example, `mbedtls_md_context_t` would be defined as a (tagged) union
of `psa_hash_operation_t` and `psa_mac_operation_t`, then `mbedtls_md_setup()`
would initialize the correct part, and the rest of the functions be simple
wrappers around PSA functions. This would vastly reduce the complexity of the
layers compared to the existing (no need to dispatch through function
pointers, just call the corresponding PSA API).
Since this would still represent a non-zero cost, not only in terms of code
size, but also in terms of maintenance (testing, etc.) this would probably
be a temporary solution: for example keep the compatibility layers in 4.0 (and
make them optional), but remove them in 5.0.
Again, this provides the most value to users if we can manage to keep the
existing API unchanged. Their might be conflicts between this goal and that of
reducing the cost, and judgment calls may need to be made.
Note: when it comes to holding public keys in the PK layer, depending on how
the rest of the code is structured, it may be worth holding the key data in
memory controlled by the PK layer as opposed to a PSA key slot, moving it to a
slot only when needed (see current `ecdsa_verify_wrap` when
`MBEDTLS_USE_PSA_CRYPTO` is defined) For example, when parsing a large
number, N, of X.509 certificates (for example the list of trusted roots), it
might be undesirable to use N PSA key slots for their public keys as long as
the certs are loaded. OTOH, this could also be addressed by merging the "X.509
parsing on-demand" (#2478), and then the public key data would be held as
bytes in the X.509 CRT structure, and only moved to a PK context / PSA slot
when it's actually used.
Note: the PK layer actually consists of two relatively distinct parts: crypto
operations, which will be covered by PSA, and parsing/writing (exporting)
from/to various formats, which is currently not fully covered by the PSA
Crypto API.
### Algorithm identifiers and other identifiers
It should be easy to provide the user with a bunch of `#define`s for algorithm
identifiers, for example `#define MBEDTLS_MD_SHA256 PSA_ALG_SHA_256`; most of
those would be in the MD, Cipher and PK compatibility layers mentioned above,
but there might be some in other modules that may be worth considering, for
example identifiers for elliptic curves.
### Lower layers
Generally speaking, we would retire all of the low-level, non-generic modules,
such as AES, SHA-256, RSA, DHM, ECDH, ECP, bignum, etc, without providing
compatibility APIs for them. People would be encouraged to switch to the PSA
API. (The compatibility implementation of the existing PK, MD, Cipher APIs
would mostly benefit people who already used those generic APis rather than
the low-level, alg-specific ones.)
### APIs in TLS and X.509
Public APIs in TLS and X.509 may be affected by the migration in at least two
ways:
1. APIs that rely on a legacy `mbedtls_` crypto type: for example
`mbedtls_ssl_conf_own_cert()` to configure a (certificate and the
associated) private key. Currently the private key is passed as a
`mbedtls_pk_context` object, which would probably change to a `psa_key_id_t`.
Since some users would probably still be using the compatibility PK layer, it
would need a way to easily extract the PSA key ID from the PK context.
2. APIs the accept list of identifiers: for example
`mbedtls_ssl_conf_curves()` taking a list of `mbedtls_ecp_group_id`s. This
could be changed to accept a list of pairs (`psa_ecc_family_t`, size) but we
should probably take this opportunity to move to a identifier independent from
the underlying crypto implementation and use TLS-specific identifiers instead
(based on IANA values or custom enums), as is currently done in the new
`mbedtls_ssl_conf_groups()` API, see #4859).
Testing
-------
An question that needs careful consideration when we come around to removing
the low-level crypto APIs and making PK, MD and Cipher optional compatibility
layers is to be sure to preserve testing quality. A lot of the existing test
cases use the low level crypto APIs; we would need to either keep using that
API for tests, or manually migrate tests to the PSA Crypto API. Perhaps a
combination of both, perhaps evolving gradually over time.

View File

@@ -0,0 +1,73 @@
#!/bin/sh
#
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
# Purpose
#
# Show external links in built libraries (X509 or TLS) or modules. This is
# usually done to list Crypto dependencies or to check modules'
# interdependencies.
#
# Usage:
# - build the library with debug symbols and the config you're interested in
# (default, full minus MBEDTLS_USE_PSA_CRYPTO, full, etc.)
# - launch this script with 1 or more arguments depending on the analysis' goal:
# - if only 1 argument is used (which is the name of the used config,
# ex: full), then the analysis is done on libmbedx509 and libmbedtls
# libraries by default
# - if multiple arguments are provided, then modules' names (ex: pk,
# pkparse, pkwrite, etc) are expected after the 1st one and the analysis
# will be done on those modules instead of the libraries.
set -eu
# list mbedtls_ symbols of a given type in a static library
syms() {
TYPE="$1"
FILE="$2"
nm "$FILE" | sed -n "s/[0-9a-f ]*${TYPE} \(mbedtls_.*\)/\1/p" | sort -u
}
# Check if the provided name refers to a module or library and return the
# same path with proper extension
get_file_with_extension() {
BASE=$1
if [ -f $BASE.o ]; then
echo $BASE.o
elif [ -f $BASE.a ]; then
echo $BASE.a
fi
}
# create listings for the given library
list() {
NAME="$1"
FILE=$(get_file_with_extension "library/${NAME}")
PREF="${CONFIG}-$NAME"
syms '[TRrD]' $FILE > ${PREF}-defined
syms U $FILE > ${PREF}-unresolved
diff ${PREF}-defined ${PREF}-unresolved \
| sed -n 's/^> //p' > ${PREF}-external
sed 's/mbedtls_\([^_]*\).*/\1/' ${PREF}-external \
| uniq -c | sort -rn > ${PREF}-modules
rm ${PREF}-defined ${PREF}-unresolved
}
CONFIG="${1:-unknown}"
# List of modules to check is provided as parameters
if [ $# -gt 1 ]; then
shift 1
ITEMS_TO_CHECK="$@"
else
ITEMS_TO_CHECK="libmbedx509 libmbedtls"
fi
for ITEM in $ITEMS_TO_CHECK; do
list $ITEM
done

View File

@@ -0,0 +1,99 @@
Testing strategy for `MBEDTLS_USE_PSA_CRYPTO`
=============================================
This document records the testing strategy used so far in implementing
`MBEDTLS_USE_PSA_CRYPTO`.
General considerations
----------------------
There needs to be at least one build in `all.sh` that enables
`MBEDTLS_USE_PSA_CRYPTO` and runs the full battery of tests; currently that's
ensured by the fact that `scripts/config.py full` enables
`MBEDTLS_USE_PSA_CRYPTO`. There needs to be at least one build with
`MBEDTLS_USE_PSA_CRYPTO` disabled (as long as it's optional); currently that's
ensured by the fact that it's disabled in the default config.
Generally, code review is enough to ensure that PSA APIs are indeed used where
they should be when `MBEDTLS_USE_PSA_CRYPTO` is enabled.
However, when it comes to TLS, we also have the option of using debug messages
to confirm which code path is taken. This is generally unnecessary, except when
a decision is made at run-time about whether to use the PSA or legacy code
path. (For example, for record protection, previously (until 3.1), some ciphers were supported
via PSA while some others weren't, with a run-time fallback. In this case, it's
good to have a debug message checked by the test case to confirm that the
right decision was made at run-time, i. e. that we didn't use the fallback for
ciphers that are supposed to be supported.)
New APIs meant for application use
----------------------------------
For example, `mbedtls_pk_setup_opaque()` is meant to be used by applications
in order to create PK contexts that can then be passed to existing TLS and
X.509 APIs (which remain unchanged).
In that case, we want:
- unit testing of the new API and directly-related APIs - for example:
- in `test_suite_pk` we have a new test function `pk_psa_utils` that exercises
`mbedtls_pk_setup_opaque()` and checks that various utility functions
(`mbedtls_pk_get_type()` etc.) work and the functions that are expected to
fail (`mbedtls_pk_verify()` etc) return the expected error.
- in `test_suite_pk` we modified the existing `pk_psa_sign` test function to
check that signature generation works as expected
- in `test_suite_pkwrite` we should have a new test function checking that
exporting (writing out) the public part of the key works as expected and
that exporting the private key fails as expected.
- integration testing of the new API with each existing API which should
accepts a context created this way - for example:
- in `programs/ssl/ssl_client2` a new option `key_opaque` that causes the
new API to be used, and one or more tests in `ssl-opt.sh` using that.
(We should have the same server-side.)
- in `test_suite_x509write` we have a new test function
`x509_csr_check_opaque()` checking integration of the new API with the
existing `mbedtls_x509write_csr_set_key()`. (And also
`mbedtls_x509write_crt_set_issuer_key()` since #5710.)
For some APIs, for example with `mbedtls_ssl_conf_psk_opaque()`, testing in
`test_suite_ssl` was historically not possible, so we only have testing in
`ssl-opt.sh`.
New APIs meant for internal use
-------------------------------
For example, `mbedtls_cipher_setup_psa()` (no longer used, soon to be
deprecated - #5261) was meant to be used by the TLS layer, but probably not
directly by applications.
In that case, we want:
- unit testing of the new API and directly-related APIs - for example:
- in `test_suite_cipher`, the existing test functions `auth_crypt_tv` and
`test_vec_crypt` gained a new parameter `use_psa` and corresponding test
cases
- integration testing:
- usually already covered by existing tests for higher-level modules:
- for example simple use of `mbedtls_cipher_setup_psa()` in TLS is already
covered by running the existing TLS tests in a build with
`MBEDTLS_USA_PSA_CRYPTO` enabled
- however if use of the new API in higher layers involves more logic that
use of the old API, specific integrations test may be required
- for example, the logic to fall back from `mbedtls_cipher_setup_psa()` to
`mbedtls_cipher_setup()` in TLS is tested by `run_test_psa` in
`ssl-opt.sh`.
Internal changes
----------------
For example, use of PSA to compute the TLS 1.2 PRF.
Changes in this category rarely require specific testing, as everything should
be already be covered by running the existing tests in a build with
`MBEDTLS_USE_PSA_CRYPTO` enabled; however we need to make sure the existing
test have sufficient coverage, and improve them if necessary.
However, if additional logic is involved, or there are run-time decisions about
whether to use the PSA or legacy code paths, specific tests might be in order.

View File

@@ -0,0 +1,536 @@
# PSA storage resilience design
## Introduction
The PSA crypto subsystem includes a persistent key store. It is possible to create a persistent key and read it back later. This must work even if the underlying storage exhibits non-nominal behavior. In this document, _resilience_ means correct behavior of the key store even under if the underlying platform behaves in a non-nominal, but still partially controlled way.
At this point, we are only concerned about one specific form of resilience: to a system crash or power loss. That is, we assume that the underlying platform behaves nominally, except that occasionally it may restart. In the field, this can happen due to a sudden loss of power.
This document explores the problem space, defines a library design and a test design.
## Resilience goals for API functions
**Goal: PSA Crypto API functions are atomic and committing.**
_Atomic_ means that when an application calls an API function, as far as the application is concerned, at any given point in time, the system is either in a state where the function has not started yet, or in a state where the function has returned. The application never needs to worry about an intermediate state.
_Committing_ means that when a function returns, the data has been written to the persistent storage. As a consequence, if the system restarts during a sequence of storage modifications $M_1, M_2, \ldots, M_n$, we know that when the system restarts, a prefix of the sequence has been performed. For example, there will never be a situation where $M_2$ has been performed but not $M_1$.
The committing property is important not only for sequences of operations, but also when reporting the result of an operation to an external system. For example, if a key creation function in the PSA Crypto API reports to the application that a key has been created, and the application reports to a server that the key has been created, it is guaranteed that the key exists even if the system restarts.
## Assumptions on the underlying file storage
PSA relies on a PSA ITS (Internal Trusted Storage) interface, which exposes a simple API. There are two functions to modify files:
* `set()` writes a whole file (either creating it, or replacing the previous content).
* `remove()` removes a file (returning a specific error code if the file does not exist).
**Assumption: the underlying ITS functions are atomic and committing.**
Since the underlying functions are atomic, the content of a file is always a version that was previously passed to `set()`. We do not try to handle the case where a file might be partially written.
## Overview of API functions
For a transparent key, all key management operations (creation or destruction) on persistent keys rely on a single call to the underlying storage (`set()` for a key creation, `remove()` for a key destruction). This also holds for an opaque key stored in a secure element that does not have its own key store: in this case, the core stores a wrapped (i.e. encrypted) copy of the key material, but this does not impact how the core interacts with the storage. Other API functions do not modify the storage.
The following case requires extra work related to resilience:
* [Key management for stateful secure element keys](#designing-key-management-for-secure-element-keys).
As a consequence, apart from the listed cases, the API calls inherit directly from the [resilience properties of the underyling storage](#assumptions-on-the-underlying-file-storage). We do not need to take any special precautions in the library design, and we do not need to perform any testing of resilience for transparent keys.
(This section was last updated for Mbed TLS 3.4.0 implementing PSA Crypto API 1.1.)
## Designing key management for secure element keys
In this section, we use “(stateful) secure element key” to mean a key stored in a stateful secure element, i.e. a secure element that stores keys. This excludes keys in a stateleess secure element for which the core stores a wrapped copy of the key. We study the problem of how key management in stateful secure elements interacts with storage and explore the design space.
### Assumptions on stateful secure elements
**Assumption: driver calls for key management in stateful secure elements are atomic and committing.**
(For stateless secure elements, this assumption is vacuously true.)
### Dual management of keys: the problem
For a secure element key, key management requires a commitment on both sites. For example, consider a successful key creation operation:
1. The core sends a request to the secure element to create a key.
2. The secure element modifies its key store to create the key.
3. The secure element reports to the core that the key has been created.
4. The core reports to the application that the key has been created.
If the core loses power between steps 1 and 2, the key does not exist yet. This is fine from an application's perspective since the core has not committed to the key's existence, but the core needs to take care not to leave resources in storage that are related to the non-existent key. If the core loses power between steps 2 and 3, the key exists in the secure element. From an application's perspective, the core may either report that the key exists or that it does not exist, but in the latter case, the core needs to free the key in the secure element, to avoid leaving behind inaccessible resources.
As a consequence, the content of the storage cannot remain the same between the end of step 1 and the end of step 3, since the core must behave differently depending on whether step 2 has taken place.
Accomplishing a transaction across system boundaries is a well-known problem in database management, with a well-known solution: two-phase commit.
### Overview of two-phase commit with stateful secure elements
With a key in a stateful secure element, a successful creation process goes as follows (see [“Key management in a secure element with storage” in the driver interface specification](../../proposed/psa-driver-interface.html#key-management-in-a-secure-element-with-storage)):
1. The core calls the driver's `"allocate_key"` entry point.
2. The driver allocates a unique identifier _D_ for the key. This is unrelated to the key identifier _A_ used by the application interface. This step must not modify the state of the secure element.
3. The core updates the storage to indicate that key identifier _A_ has the identifier _D_ in the driver, and that _A_ is in a half-created state.
4. The core calls the driver's key creation entry point, passing it the driver's chosen identifier _D_.
5. The driver creates the key in the secure element. When this happens, it concludes the voting phase of the two-phase commit: effectively, the secure element decides to commit. (It is however possible to revert this commitment by giving the secure element the order to destroy the key.)
6. The core updates the storage to indicate that _A_ is now in a fully created state. This concludes the commit phase of the two-phase commit.
If there is a loss of power:
* Before step 3: the system state has not changed at all. As far as the world is concerned, the key creation attempt never happened.
* Between step 3 and step 6: upon restart, the core needs to find out whether the secure element completed step 5 or not, and reconcile the state of the storage with the state of the secure element.
* After step 6: the key has been created successfully.
Key destruction goes as follows:
1. The core updates the storage indicating that the key is being destroyed.
2. The core calls the driver's `"destroy_key"` entry point.
3. The secure element destroys the key.
4. The core updates the storage to indicate that the key has been destroyed.
If there is a loss of power:
* Before step 1: the system state has not changed at all. As far as the world is concerned, the key destruction attempt never happened.
* Between step 1 and step 4: upon restart, the core needs to find out whether the secure element completed step 3 or not, and reconcile the state of the storage with the state of the secure element.
* After step 4: the key has been destroyed successfully.
In both cases, upon restart, the core needs to perform a transaction recovery. When a power loss happens, the core decides whether to commit or abort the transaction.
Note that the analysis in this section assumes that the driver does not update its persistent state during a key management operation (or at least not in a way that is influences the key management process — for example, it might renew an authorization token).
### Optimization considerations for transactions
We assume that power failures are rare. Therefore we will primarily optimize for the normal case. Transaction recovery needs to be practical, but does not have to be fully optimized.
The main quantity we will optimize for is the number of storage updates in the nominal case. This is good for performance because storage writes are likely to dominate the runtime in some hardware configurations where storage writes are slow and communication with the secure element is fast, for key management operations that require a small amount of computation. In addition, minimizing the number of storage updates is good for the longevity of flash media.
#### Information available during recovery
The PSA ITS API does not support enumerating files in storage: an ITS call can only access one file identifier. Therefore transaction recovery cannot be done by traversing files whose name is or encodes the key identifier. It must start by traversing a small number of files whose names are independent of the key identifiers involved.
#### Minimum effort for a transaction
Per the [assumptions on the underlying file storage](#assumptions-on-the-underlying-file-storage), each atomic operation in the internal storage concerns a single file: either removing it, or setting its content. Furthermore there is no way to enumerate the files in storage.
A key creation function must transform the internal storage from a state where file `id` does not exist, to a state where file `id` exists and has its desired final content (containing the key attributes and the driver's key identifier). The situation is similar with key destruction, except that the initial and final states are exchanged. Neither the initial state nor the final state reference `id` otherwise.
For a key that is not in a stateful element, the transaction consists of a single write operation. As discussed previously, this is not possible with a stateful secure element because the state of the internal storage needs to change both before and after the state change in the secure element. No other single-write algorithm works.
If there is a power failure around the time of changing the state of the secure element, there must be information in the internal storage that indicates that key `id` has a transaction in progress. The file `id` cannot be used for this purpose because there is no way to enumerate all keys (and even if there was, it would not be practical). Therefore the transaction will need to modify some other file `t` with a fixed name (a name that doesn't depend on the key). Since the final system state should be identical to the initial state except for the file `id`, the minimum number of storage operations for a transaction is 3:
* Write (create or update) a file `t` referencing `id`.
* Write the final state of `id`.
* Restore `t` to its initial state.
The strategies discussed in the [overview above](#overview-of-two-phase-commit-with-stateful-secure-elements) follow this pattern, with `t` being the file containing the transaction list that the recovery consults. We have just proved that this pattern is optimal.
Note that this pattern requires the state of `id` to be modified only once. In particular, if a key management involves writing an intermediate state for `id` before modifying the secure element state and writing a different state after that, this will require a total of 4 updates to internal storage. Since we want to minimize the number of storage updates, we will not explore designs that involved updating `id` twice or more.
### Recovery strategies
When the core starts, it needs to know about transaction(s) that need to be resumed. This information will be stored in a persistent “transaction list”, with one entry per key. In this section, we explore recovery strategies, and we determine what the transaction list needs to contain as well as when it needs to be updated. Other sections will explore the format of the transaction list, as well as how many keys it needs to contain.
#### Exploring the recovery decision tree
There are four cases for recovery when a transaction is in progress. In each case, the core can either decide to commit the transaction (which may require replaying the interrupted part) or abort it (which may require a rewind in the secure element). It may call the secure element driver's `"get_key_attributes"` entry point to find out whether the key is present.
* Key creation, key not present in the secure element:
* Committing means replaying the driver call in the key creation. This requires all the input, for example the data to import. This seems impractical in general. Also, the second driver call require a new call to `"allocate_key"` which will in general changing the key's driver identifier, which complicates state management in the core. Given the likely complexity, we exclude this strategy.
* Aborting means removing any trace of the key creation.
* Key creation, key present in the secure element:
* Committing means finishing the update of the core's persistent state, as would have been done if the transaction had not been interrupted.
* Aborting means destroying the key in the secure element and removing any local storage used for that key.
* Key destruction, key not present in the secure element:
* Committing means finishing the update of the core's persistent state, as would have been done if the transaction had not been interrupted, by removing any remaining local storage used for that key.
* Aborting would mean re-creating the key in the secure element, which is impossible in general since the key material is no longer present.
* Key destruction, key present in the secure element:
* Committing means finishing the update of the core's persistent state, as would have been done if the transaction had not been interrupted, by removing any remaining local storage used for that key and destroying the key in the secure element.
* Aborting means keeping the key. This requires no action on the secure element, and is only practical locally if the local storage is intact.
#### Comparing recovery strategies
From the analysis above, assuming that all keys are treated in the same way, there are 4 possible strategies.
* [Always follow the state of the secure element](#exploring-the-follow-the-secure-element-strategy). This requires the secure element driver to have a `"get_key_attributes"` entry point. Recovery means resuming the operation where it left off. For key creation, this means that the key metadata needs to be saved before calling the secure element's key creation entry point.
* Minimize the information processing: [always destroy the key](#exploring-the-always-destroy-strategy), i.e. abort all key creations and commit all key destructions. This does not require querying the state of the secure element. This does not require any special precautions to preserve information about the key during the transaction. It simplifies recovery in that the recovery process might not even need to know whether it's recovering a key creation or a key destruction.
* Follow the state of the secure element for key creation, but always go ahead with key destruction. This requires the secure element driver to have a `"get_key_attributes"` entry point. Compared to always following the state of the secure element, this has the advantage of maximizing the chance that a command to destroy key material is effective. Compared to always destroying the key, this has a performance advantage if a key creation is interrupted. These do not seem like decisive advantages, so we will not consider this strategy further.
* Always abort key creation, but follow the state of the secure element for key destruction. I can't think of a good reason to choose this strategy.
Requiring the driver to have a `"get_key_attributes"` entry point is potentially problematic because some secure elements don't have room to store key attributes: a key slot always exists, and it's up to the user to remember what, if anything, they put in it. The driver has to remember anyway, so that it can find a free slot when creating a key. But with a recovery strategy that doesn't involve a `"get_key_attributes"` entry point, the driver design is easier: the driver doesn't need to protect the information about slots in use against a power failure, the core takes care of that.
#### Exploring the follow-the-secure-element strategy
Each entry in the transaction list contains the API key identifier, the key lifetime (or at least the location), the driver key identifier (not constant-size), and an indication of whether the key is being created or destroyed.
For key creation, we have all the information to store in the key file once the `"allocate_key"` call returns. We must store all the information that will go in the key file before calling the driver's key creation entry point. Therefore the normal sequence of operations is:
1. Call the driver's `"allocate_key"` entry point.
2. Add the key to the transaction list, indicating that it is being created.
3. Write the key file.
4. Call the driver's key creation entry point.
5. Remove the key from the transaction list.
During recovery, for each key in the transaction list that was being created:
* If the key exists in the secure element, just remove it from the transaction list.
* If the key does not exist in the secure element, first remove the key file if it is present, then remove the key from the transaction list.
For key destruction, we need to preserve the key file until after the key has been destroyed. Therefore the normal sequence of operations is:
1. Add the key to the transaction list, indicating that it is being destroyed.
2. Call the driver's `"destroy_key"` entry point.
3. Remove the key file.
4. Remove the key from the transaction list.
During recovery, for each key in the transaction list that was being created:
* If the key exists in the secure element, call the driver's `"destroy_key"` entry point, then remove the key file, and finally remote the key from the transaction lits.
* If the key does not exist in the secure element, remove the key file if it is still present, then remove the key from the transaction list.
#### Exploring the always-destroy strategy
Each entry in the transaction list contains the API key identifier, the key lifetime (or at least the location), and the driver key identifier (not constant-size).
For key creation, we do not need to store the key's metadata until it has been created in the secure element. Therefore the normal sequence of operations is:
1. Call the driver's `"allocate_key"` entry point.
2. Add the key to the transaction list.
3. Call the driver's key creation entry point.
4. Write the key file.
5. Remove the key from the transaction list.
For key destruction, we can remove the key file before contacting the secure element. Therefore the normal sequence of operations is:
1. Add the key to the transaction list.
2. Remove the key file.
3. Call the driver's `"destroy_key"` entry point.
4. Remove the key from the transaction list.
Recovery means removing all traces of all keys on the transaction list. This means following the destruction process, starting after the point where the key has been added to the transaction list, and ignoring any failure of a removal action if the item to remove does not exist:
1. Remove the key file, treating `DOES_NOT_EXIST` as a success.
2. Call the driver's `"destroy_key"` entry point, treating `DOES_NOT_EXIST` as a success.
3. Remove the key from the transaction list.
#### Always-destroy strategy with a simpler transaction file
We can modify the [always-destroy strategy](#exploring-the-always-destroy-strategy) to make the transaction file simpler: if we ensure that the key file always exists if the key exists in the secure element, then the transaction list does not need to include the driver key identifier: it can be read from the key file.
For key creation, we need to store the key's metadata before creating in the secure element. Therefore the normal sequence of operations is:
1. Call the driver's `"allocate_key"` entry point.
2. Add the key to the transaction list.
3. Write the key file.
4. Call the driver's key creation entry point.
5. Remove the key from the transaction list.
For key destruction, we need to contact the secure element before removing the key file. Therefore the normal sequence of operations is:
1. Add the key to the transaction list.
2. Call the driver's `"destroy_key"` entry point.
3. Remove the key file.
4. Remove the key from the transaction list.
Recovery means removing all traces of all keys on the transaction list. This means following the destruction process, starting after the point where the key has been added to the transaction list, and ignoring any failure of a removal action if the item to remove does not exist:
1. Load the driver key identifier from the key file. If the key file does not exist, skip to step 4.
2. Call the driver's `"destroy_key"` entry point, treating `DOES_NOT_EXIST` as a success.
3. Remove the key file, treating `DOES_NOT_EXIST` as a success.
4. Remove the key from the transaction list.
Compared with the basic always-destroy strategy:
* The transaction file handling is simpler since its entries have a fixed size.
* The flow of information is somewhat different from transparent keys and keys in stateless secure elements: we aren't just replacing “create the key material” by “tell the secure element to create the key material”, those happen at different times. But there's a different flow for stateful secure elements anyway, since the call to `"allocate_key"` has no analog in the stateless secure element or transparent cases.
#### Assisting secure element drivers with recovery
The actions of the secure element driver may themselves be non-atomic. So the driver must be given a chance to perform recovery.
To simplify the design of the driver, the core should guarantee that the driver will know if a transaction was in progress and the core cannot be sure about the state of the secure element. Merely calling a read-only entry point such as `"get_key_attributes"` does not provide enough information to the driver for it to know that it should actively perform recovery related to that key.
This gives an advantage to the “always destroy” strategy. Under this strategy, if the key might be in a transitional state, the core will request a key destruction from the driver. This means that, if the driver has per-key auxiliary data to clean up, it can bundle that as part of the key's destruction.
### Testing non-atomic processes
In this section, we discuss how to test non-atomic processes that must implement an atomic and committing interface. As discussed in [“Overview of API functions”](#overview-of-api-functions), this concerns key management in stateful secure elements.
#### Naive test strategy for non-atomic processes
Non-atomic processes consist of a series of atomic, committing steps.
Our general strategy to test them is as follows: every time there is a modification of persistent state, either in storage or in the (simulated) secure element, try both the nominal case and simulating a power loss. If a power loss occurs, restart the system (i.e. clean up and call `psa_crypto_init()`), and check that the system ends up in a consistent state.
Note that this creates a binary tree of possibilities: after each state modification, there may or may not be a restart, and after that different state modifications may occur, each of which may or may not be followed by a restart.
For example, consider testing of one key creation operation (see [“Overview of two-phase commit with stateful secure elements”](#overview-of-two-phase-commit-with-stateful-secure-elements), under the simplifying assumption that each storage update step, as well as the recovery after a restart, each make a single (atomic) storage modification and no secure element access. The nominal case consists of three state modifications: storage modification (start transaction), creation on the secure element, storage modification (commit transaction). We need to test the following sequences:
* Start transaction, restart, recovery.
* Start transaction, secure element operation, restart, recovery.
* Start transaction, secure element operation, commit transaction.
If, for example, recovery consists of two atomic steps, the tree of possibilities expands and may be infinite:
* Start transaction, restart, recovery step 1, restart, recovery step 1, recovery step 2.
* Start transaction, restart, recovery step 1, restart, recovery step 1, restart, recovery step 1, recovery step 2.
* Start transaction, restart, recovery step 1, restart, recovery step 1, restart, recovery step 1, restart, recovery step 1, recovery step 2.
* etc.
* Start transaction, secure element operation, restart, ...
* Start transaction, secure element operation, commit transaction.
In order to limit the possibilities, we need to make some assumptions about the recovery step. For example, if we have confidence that recovery step 1 is idempotent (i.e. doing it twice is the same as doing it once), we don't need to test what happens in execution sequences that take recovery step 1 more than twice in a row.
### Splitting normal behavior and transaction recovery
We introduce an abstraction level in transaction recovery:
* Normal operation must maintain a certain invariant on the state of the world (internal storage and secure element).
* Transaction recovery is defined over all states of the world that satisfy this invariant.
This separation of concerns greatly facilitates testing, since it is now split into two parts:
* During the testing of normal operation, we can use read-only invasive testing to ensure that the invariant is maintained. No modification of normal behavior (such as simulated power failures) is necessary.
* Testing of transaction recovery is independent of how the system state was reached. We only need to artificially construct a representative sample of system states that match the invariant. Transaction recovery is itself an operation that must respect the invariant, and so we do not need any special testing for the case of an interrupted recovery.
Another benefit of this approach is that it is easier to specify and test what happens if the library is updated on a device with leftovers from an interrupted transaction. We will require and test that the new version of the library supports recovery of the old library's states, without worrying how those states were reached.
#### Towards an invariant for transactions
As discussed in the section [“Recovery strategies”](#recovery-strategies), the information about active transactions is stored in a transaction list file. The name of the transaction list file does not depend on the identifiers of the keys in the list, but there may be more than one transaction list, for example one per secure element. If so, each transaction list can be considered independently.
When no transaction is in progress, the transaction list does not exist, or is empty. The empty case must be supported because this is the initial state of the filesystem. When no transaction is in progress, the state of the secure element must be consistent with references to keys in that secure element contained in key files. More generally, if a key is not in the transaction list, then the key must be present in the secure element if and only if the key file is in the internal storage.
For the purposes of the state invariant, it matters whether the transaction list file contains the driver key identifier, or if the driver key identifier is only stored in the key file. This is because the core needs to know the driver key id in order to access the secure element. If the transaction list does not contain the driver key identifier, and the key file does not exist, the key must not be present in the secure element.
We thus have two scenarios, each with their own invariant: one where the transaction list contains only key identifiers, and one where it also contains the secure element's key identifier (as well as the location of the secure element if this is not encoded in the name of the transaction list file).
#### Storage invariant if the transaction list contains application key identifiers only
Invariants:
* If the file `id` does not exist, then no resources corresponding to that key are in a secure element. This holds whether `id` is in the transaction list or not.
* If `id` is not in the transaction list and the file `id` exists and references a key in a stateful secure element, then the key is present in the secure element.
If `id` is in the transaction list and the file `id` exists, the key may or may not be present in the secure element.
The invariant imposes constraints on the [order of operations for the two-phase commit](#overview-of-two-phase-commit-with-stateful-secure-elements): key creation must create `id` before calling the secure element's key creation entry point, and key destruction must remove `id` after calling the secure element's key destruction entry point.
For recovery:
* If the file `id` does not exist, then nothing needs to be done for recovery, other than removing `id` from the transaction list.
* If the file `id` exists:
* It is correct to destroy the key in the secure element (treating a `DOES_NOT_EXIST` error as a success), then remove `id`.
* It is correct to check whether the key exists in the secure element, and if it does, keep it and keep `id`. If not, remove `id` from the internal storage.
#### Storage invariant if the transaction list contains driver key identifiers
Invariants:
* If `id` is not in the transaction list and the file `id` does not exist, then no resources corresponding to that key are in a secure element.
* If `id` is not in the transaction list and the file `id` exists, then the key is present in the secure element.
If `id` is in the transaction list, neither the state of `id` in the internal storage nor the state of the key in the secure element is known.
For recovery:
* If the file `id` does not exist, then destroy the key in the secure element (treating a `DOES_NOT_EXIST` error as a success).
* If the file `id` exists:
* It is correct to destroy the key in the secure element (treating a `DOES_NOT_EXIST` error as a success), then remove `id`.
* It is correct to check whether the key exists in the secure element, and if it does, keep it and keep `id`. If not, remove `id` from the internal storage.
#### Coverage of states that respect the invariant
For a given key, we have to consider three a priori independent boolean states:
* Whether the key file exists.
* Whether the key is in the secure element.
* Whether the key is in the transaction list.
There is full coverage for one key if we have tests of recovery for the states among these $2^3 = 8$ possibilities that satisfy the storage invariant.
In addition, testing should adequately cover the case of multiple keys in the transaction list. How much coverage is adequate depends on the layout of the list as well as white-box considerations of how the list is manipulated.
### Choice of a transaction design
#### Chosen transaction algorithm
Based on [“Optimization considerations for transactions”](#optimization-considerations-for-transactions), we choose a transaction algorithm that consists in the following operations:
1. Add the key identifier to the transaction list.
2. Call the secure element's key creation or destruction entry point.
3. Remove the key identifier from the transaction list.
In addition, before or after step 2, create or remove the key file in the internal storage.
In order to conveniently support multiple transactions at the same time, we pick the simplest possible layout for the transaction list: a simple array of key identifiers. Since the transaction list does not contain the driver key identifier:
* During key creation, create the key file in internal storage in the internal storage before calling the secure element's key creation entry point.
* During key destruction, call the secure element's key destruction entry point before removing the key file in internal storage.
This choice of algorithm does not require the secure element driver to have a `"get_key_attributes"` entry point.
#### Chosen storage invariant
The [storage invariant](#storage-invariant-if-the-transaction-list-contains-application-key-identifiers-only) is as follows:
* If the file `id` does not exist, then no resources corresponding to that key are in a secure element. This holds whether `id` is in the transaction list or not.
* If `id` is not in the transaction list and the file `id` exists and references a key in a stateful secure element, then the key is present in the secure element.
* If `id` is in the transaction list and a key exists by that identifier, the key's location is a stateful secure element.
#### Chosen recovery process
To [assist secure element drivers with recovery](#assisting-secure-element-drivers-with-recovery), we pick the [always-destroy recovery strategy with a simple transaction file](#always-destroy-strategy-with-a-simpler-transaction-file). The the recovery process is as follows:
* If the file `id` does not exist, then nothing needs to be done for recovery, other than removing `id` from the transaction list.
* If the file `id` exists, call the secure element's key destruction entry point (treating a `DOES_NOT_EXIST` error as a success), then remove `id`.
## Specification of key management in stateful secure elements
This section only concerns stateful secure elements as discussed in [“Designing key management for secure element keys”](#designing-key-management-for-secure-element-keys), i.e. secure elements with an `"allocate_key"` entry point. The design follows the general principle described in [“Overview of two-phase commit with stateful secure elements”](#overview-of-two-phase-commit-with-stateful-secure-elements) and the specific choices justified in [“Choice of a transaction design”](choice-of-a-transaction-design).
### Transaction list file manipulation
The transaction list is a simple array of key identifiers.
To add a key identifier to the list:
1. Load the current list from the transaction list if it exists and it is not already cached in memory.
2. Append the key identifier to the array.
3. Write the updated list file.
To remove a key identifier from the list:
1. Load the current list if it is not already cached in memory. It is an error if the file does not exist since it must contain this identifier.
2. Remove the key identifier from the array. If it wasn't the last element in array, move array elements to fill the hole.
3. If the list is now empty, remove the transaction list file. Otherwise write the updated list to the file.
### Key creation process in the core
Let _A_ be the application key identifier.
1. Call the driver's `"allocate_key"` entry point, obtaining the driver key identifier _D_ chosen by the driver.
2. Add _A_ [to the transaction list file](#transaction-list-file-manipulation).
3. Create the key file _A_ in the internal storage. Note that this is done at a different time from what happens when creating a transparent key or a key in a stateless secure element: in those cases, creating the key file happens after the actual creation of the key material.
4. Call the secure element's key creation entry point.
5. Remove _A_ [from the transaction list file](#transaction-list-file-manipulation).
If any step fails:
* If the secure element's key creation entry point has been called and succeeded, call the secure element's destroy entry point.
* If the key file has been created in the internal storage, remove it.
* Remove the key from the transaction list.
Note that this process is identical to key destruction, except that the key is already in the transaction list.
### Key destruction process in the core
Let _A_ be the application key identifier.
We assume that the key is loaded in a key slot in memory: the core needs to know the key's location in order to determine whether the key is in a stateful secure element, and if so to know the driver key identifier. A possible optimization would be to load only that information in local variables, without occupying a key store; this has the advantage that key destruction works even if the key store is full.
1. Add _A_ [to the transaction list file](#transaction-list-file-manipulation).
2. Call the secure element's `"destroy_key"` entry point.
3. Remove the key file _A_ from the internal storage.
4. Remove _A_ [from the transaction list file](#transaction-list-file-manipulation).
5. Free the corresponding key slot in memory.
If any step fails, remember the error but continue the process, to destroy the resources associated with the key as much as is practical.
### Transaction recovery
For each key _A_ in the transaction list file, if the file _A_ exists in the internal storage:
1. Load the key into a key slot in memory (to get its location and the driver key identifier, although we could get the location from the transaction list).
2. Call the secure element's `"destroy_key"` entry point.
3. Remove the key file _A_ from the internal storage.
4. Remove _A_ [from the transaction list file](#transaction-list-file-manipulation).
5. Free the corresponding key slot in memory.
The transaction list file can be processed in any order.
It is correct to update the transaction list after recovering each key, or to only delete the transaction list file once the recovery is over.
### Concrete format of the transaction list file
The transaction list file contains a [fixed header](#transaction-list-header-format) followed by a list of [fixed-size elements](#transaction-list-element-format).
The file uid is `PSA_CRYPTO_ITS_TRANSACTION_LIST_UID` = 0xffffff53.
#### Transaction list header format
* Version (2 bytes): 0x0003. (Chosen to differ from the first two bytes of a [dynamic secure element transaction file](#dynamic-secure-element-transaction-file), to reduce the risk of a mix-up.)
* Key name size (2 bytes): `sizeof(psa_storage_uid_t)`. Storing this size avoids reading bad data if Mbed TLS is upgraded to a different integration that names keys differently.
#### Transaction list element format
In practice, there will rarely be more than one active transaction at a time, so the size of an element is not critical for efficiency. Therefore, in addition to the key identifier which is required, we add some potentially useful information in case it becomes useful later. We do not put the driver key identifier because its size is not a constant.
* Key id: `sizeof(psa_storage_uid_t)` bytes.
* Key lifetime: 4 bytes (`sizeof(psa_key_lifetime_t)`). Currently unused during recovery.
* Operation type: 1 byte. Currently unused during recovery.
* 0: destroy key.
* 1: import key.
* 2: generate key.
* 3: derive key.
* 4: import key.
* Padding: 3 bytes. Reserved for future use. Currently unused during recovery.
#### Dynamic secure element transaction file
Note that the code base already references a “transaction file” (`PSA_CRYPTO_ITS_TRANSACTION_UID` = 0xffffff54), used by dynamic secure elements (feature enabled with `MBEDTLS_PSA_CRYPTO_SE_C`). This is a deprecated feature that has not been fully implemented: when this feature is enabled, the transaction file gets written during transactions, but if it exists when PSA crypto starts, `psa_crypto_init()` fails because [recovery has never been implemented](https://github.com/ARMmbed/mbed-crypto/issues/218).
For the new kind of secure element driver, we pick a different file name to avoid any mixup.
## Testing key management in secure elements
### Instrumentation for checking the storage invariant
#### Test hook locations
When `MBEDTLS_TEST_HOOKS` is enabled, each call to `psa_its_set()` or `psa_its_remove()` also calls a test hook, passing the file UID as an argument to the hook.
When a stateful secure element driver is present in the build, we use this hook to verify that the storage respects the [storage invariant](#chosen-storage-invariant). In addition, if there is some information about key ongoing operation (set explicitly by the test function as a global variable in the test framework), the hook tests that the content of the storage is compatible with the ongoing operation.
#### Test hook behavior
The storage invariant check cannot check all keys in storage, and does not need to (for example, it would be pointless to check anything about transparent keys). It checks the following keys:
* When invoked from the test hook on a key file: on that key.
* When invoked from the test hook on the transaction file: on all the keys listed in the transaction file.
* When invoked from a test secure element: on the specified key.
#### Test hook extra data
Some tests set global variables to indicate which persistent keys they manipulate. We instrument at least some of these tests to also indicate what operation is in progress on the key. See the GitHub issues or the source code for details.
### Testing of transaction recovery
When no secure element driver is present in the build, the presence of a transaction list file during initialization is an error.
#### Recovery testing process
When the stateful test secure element driver is present in the build, we run test cases on a representative selection of states of the internal storage and the test secure element. Each test case for transaction recovery has the following form:
1. Create the initial state:
* Create a transaction list file with a certain content.
* Create key files that we want to have in the test.
* Call the secure element test driver to create keys without going throught the PSA API.
2. Call `psa_crypto_init()`. Expect success if the initial state satisfies the [storage invariant](#chosen-storage-invariant) and failure otherwise.
3. On success, check that the expected keys exist, and that keys that are expected to have been destroyed by recovery do not exist.
4. Clean up the storage and the secure element test driver's state.
#### States to test recovery on
For a given key located in a secure element, the following combination of states are possible:
* Key file: present, absent.
* Key in secure element: present, absent.
* Key in the transaction file: no, creation (import), destruction.
We test all $2 \times 2 \times 3 = 12$ possibilities, each in its own test case. In each case, call the test function that checks the storage invariant and check that its result is as expected. Then, if the storage invariant is met, follow the [recovery testing process](#recovery-testing-process).
In addition, have at least one positive test case for each creation method other than import, to ensure that we don't reject a valid value.
Note: testing of a damaged filesystem (including a filesystem that doesn't meet the invariant) is out of scope of the present document.

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

View File

@@ -0,0 +1,450 @@
# Thread safety of the PSA subsystem
Currently PSA Crypto API calls in Mbed TLS releases are not thread-safe. In Mbed TLS 3.6 we are planning to add a minimal support for thread-safety of the PSA Crypto API (see section [Strategy for 3.6](#strategy-for-36)).
In the [Design analysis](#design-analysis) section we analyse design choices. This discussion is not constrained to what is planned for 3.6 and considers future developments. It also leaves some questions open and discusses options that have been (or probably will be) rejected.
## Design analysis
This section explores possible designs and does not reflect what is currently implemented.
### Requirements
#### Backward compatibility requirement
Code that is currently working must keep working. There can be an exception for code that uses features that are advertised as experimental; for example, it would be annoying but ok to add extra requirements for drivers.
(In this section, “currently” means Mbed TLS releases without proper concurrency management: 3.0.0, 3.1.0, and any other subsequent 3.x version.)
In particular, if you either protect all PSA calls with a mutex, or only ever call PSA functions from a single thread, your application currently works and must keep working. If your application currently builds and works with `MBEDTLS_PSA_CRYPTO_C` and `MBEDTLS_THREADING_C` enabled, it must keep building and working.
As a consequence, we must not add a new platform requirement beyond mutexes for the base case. It would be ok to add new platform requirements if they're only needed for PSA drivers, or if they're only performance improvements.
Tempting platform requirements that we cannot add to the default `MBEDTLS_THREADING_C` include:
* Releasing a mutex from a different thread than the one that acquired it. This isn't even guaranteed to work with pthreads.
* New primitives such as semaphores or condition variables.
#### Correctness out of the box
If you build with `MBEDTLS_PSA_CRYPTO_C` and `MBEDTLS_THREADING_C`, the code must be functionally correct: no race conditions, deadlocks or livelocks.
The [PSA Crypto API specification](https://armmbed.github.io/mbed-crypto/html/overview/conventions.html#concurrent-calls) defines minimum expectations for concurrent calls. They must work as if they had been executed one at a time (excluding resource-management errors), except that the following cases have undefined behavior:
* Destroying a key while it's in use.
* Concurrent calls using the same operation object. (An operation object may not be used by more than one thread at a time. But it can move from one thread to another between calls.)
* Overlap of an output buffer with an input or output of a concurrent call.
* Modification of an input buffer during a call.
Note that while the specification does not define the behavior in such cases, Mbed TLS can be used as a crypto service. It's acceptable if an application can mess itself up, but it is not acceptable if an application can mess up the crypto service. As a consequence, destroying a key while it's in use may violate the security property that all key material is erased as soon as `psa_destroy_key` returns, but it may not cause data corruption or read-after-free inside the key store.
#### No spinning
The code must not spin on a potentially non-blocking task. For example, this is proscribed:
```
lock(m);
while (!its_my_turn) {
unlock(m);
lock(m);
}
```
Rationale: this can cause battery drain, and can even be a livelock (spinning forever), e.g. if the thread that might unblock this one has a lower priority.
#### Driver requirements
At the time of writing, the driver interface specification does not consider multithreaded environments.
We need to define clear policies so that driver implementers know what to expect. Here are two possible policies at two ends of the spectrum; what is desirable is probably somewhere in between.
* **Policy 1:** Driver entry points may be called concurrently from multiple threads, even if they're using the same key, and even including destroying a key while an operation is in progress on it.
* **Policy 2:** At most one driver entry point is active at any given time.
Combining the two we arrive at **Policy 3**:
* By default, each driver only has at most one entry point active at any given time. In other words, each driver has its own exclusive lock.
* Drivers have an optional `"thread_safe"` boolean property. If true, it allows concurrent calls to this driver.
* Even with a thread-safe driver, the core never starts the destruction of a key while there are operations in progress on it, and never performs concurrent calls on the same multipart operation.
#### Long-term performance requirements
In the short term, correctness is the important thing. We can start with a global lock.
In the medium to long term, performing a slow or blocking operation (for example, a driver call, or an RSA decryption) should not block other threads, even if they're calling the same driver or using the same key object.
We may want to go directly to a more sophisticated approach because when a system works with a global lock, it's typically hard to get rid of it to get more fine-grained concurrency.
#### Key destruction short-term requirements
##### Summary of guarantees in the short term
When `psa_destroy_key` returns:
1. The key identifier doesn't exist. Rationale: this is a functional requirement for persistent keys: the caller can immediately create a new key with the same identifier.
2. The resources from the key have been freed. Rationale: in a low-resource condition, this may be necessary for the caller to re-create a similar key, which should be possible.
3. The call must not block indefinitely, and in particular cannot wait for an event that is triggered by application code such as calling an abort function. Rationale: this may not strictly be a functional requirement, but it is an expectation `psa_destroy_key` does not block forever due to another thread, which could potentially be another process on a multi-process system. In particular, it is only acceptable for `psa_destroy_key` to block, when waiting for another thread to complete a PSA Cryptography API call that it had already started.
When `psa_destroy_key` is called on a key that is in use, guarantee 2. might be violated. (This is consistent with the requirement [“Correctness out of the box”](#correctness-out-of-the-box), as destroying a key while it's in use is undefined behavior.)
#### Key destruction long-term requirements
The [PSA Crypto API specification](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#key-destruction) mandates that implementations make a best effort to ensure that the key material cannot be recovered. In the long term, it would be good to guarantee that `psa_destroy_key` wipes all copies of the key material.
##### Summary of guarantees in the long term
When `psa_destroy_key` returns:
1. The key identifier doesn't exist. Rationale: this is a functional requirement for persistent keys: the caller can immediately create a new key with the same identifier.
2. The resources from the key have been freed. Rationale: in a low-resource condition, this may be necessary for the caller to re-create a similar key, which should be possible.
3. The call must not block indefinitely, and in particular cannot wait for an event that is triggered by application code such as calling an abort function. Rationale: this may not strictly be a functional requirement, but it is an expectation `psa_destroy_key` does not block forever due to another thread, which could potentially be another process on a multi-process system. In particular, it is only acceptable for `psa_destroy_key` to block, when waiting for another thread to complete a PSA Cryptography API call that it had already started.
4. No copy of the key material exists. Rationale: this is a security requirement. We do not have this requirement yet, but we need to document this as a security weakness, and we would like to satisfy this security requirement in the future.
As opposed to the short term requirements, all the above guarantees hold even if `psa_destroy_key` is called on a key that is in use.
### Resources to protect
Analysis of the behavior of the PSA key store as of Mbed TLS 9202ba37b19d3ea25c8451fd8597fce69eaa6867.
#### Global variables
* `psa_crypto_slot_management::global_data.key_slots[i]`: see [“Key slots”](#key-slots).
* `psa_crypto_slot_management::global_data.key_slots_initialized`:
* `psa_initialize_key_slots`: modification.
* `psa_wipe_all_key_slots`: modification.
* `psa_get_empty_key_slot`: read.
* `psa_get_and_lock_key_slot`: read.
* `psa_crypto::global_data.rng`: depends on the RNG implementation. See [“Random generator”](#random-generator).
* `psa_generate_random`: query.
* `mbedtls_psa_crypto_configure_entropy_sources` (only if `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` is enabled): setup. Only called from `psa_crypto_init` via `mbedtls_psa_random_init`, or from test code.
* `mbedtls_psa_crypto_free`: deinit.
* `psa_crypto_init`: seed (via `mbedtls_psa_random_seed`); setup via `mbedtls_psa_crypto_configure_entropy_sources.
* `psa_crypto::global_data.{initialized,rng_state}`: these are bit-fields and cannot be modified independently so they must be protected by the same mutex. The following functions access these fields:
* `mbedtls_psa_crypto_configure_entropy_sources` [`rng_state`] (only if `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` is enabled): read. Only called from `psa_crypto_init` via `mbedtls_psa_random_init`, or from test code.
* `mbedtls_psa_crypto_free`: modification.
* `psa_crypto_init`: modification.
* Many functions via `GUARD_MODULE_INITIALIZED`: read.
#### Key slots
##### Key slot array traversal
“Occupied key slot” is determined by `psa_is_key_slot_occupied` based on `slot->attr.type`.
The following functions traverse the key slot array:
* `psa_get_and_lock_key_slot_in_memory`: reads `slot->attr.id`.
* `psa_get_and_lock_key_slot_in_memory`: calls `psa_lock_key_slot` on one occupied slot.
* `psa_get_empty_key_slot`: calls `psa_is_key_slot_occupied`.
* `psa_get_empty_key_slot`: calls `psa_wipe_key_slot` and more modifications on one occupied slot with no active user.
* `psa_get_empty_key_slot`: calls `psa_lock_key_slot` and more modification on one unoccupied slot.
* `psa_wipe_all_key_slots`: writes to all slots.
* `mbedtls_psa_get_stats`: reads from all slots.
##### Key slot state
The following functions modify a slot's usage state:
* `psa_lock_key_slot`: writes to `slot->lock_count`.
* `psa_unlock_key_slot`: writes to `slot->lock_count`.
* `psa_wipe_key_slot`: writes to `slot->lock_count`.
* `psa_destroy_key`: reads `slot->lock_count`, calls `psa_lock_key_slot`.
* `psa_wipe_all_key_slots`: writes to all slots.
* `psa_get_empty_key_slot`: writes to `slot->lock_count` and calls `psa_wipe_key_slot` and `psa_lock_key_slot` on one occupied slot with no active user; calls `psa_lock_key_slot` on one unoccupied slot.
* `psa_close_key`: reads `slot->lock_count`; calls `psa_get_and_lock_key_slot_in_memory`, `psa_wipe_key_slot` and `psa_unlock_key_slot`.
* `psa_purge_key`: reads `slot->lock_count`; calls `psa_get_and_lock_key_slot_in_memory`, `psa_wipe_key_slot` and `psa_unlock_key_slot`.
**slot->attr access:**
`psa_crypto_core.h`:
* `psa_key_slot_set_flags` - writes to attr.flags
* `psa_key_slot_set_bits_in_flags` - writes to attr.flags
* `psa_key_slot_clear_bits` - writes to attr.flags
* `psa_is_key_slot_occupied` - reads attr.type (but see “[Determining whether a key slot is occupied](#determining-whether-a-key-slot-is-occupied)”)
* `psa_key_slot_get_flags` - reads attr.flags
`psa_crypto_slot_management.c`:
* `psa_get_and_lock_key_slot_in_memory` - reads attr.id
* `psa_get_empty_key_slot` - reads attr.lifetime
* `psa_load_persistent_key_into_slot` - passes attr pointer to psa_load_persistent_key
* `psa_load_persistent_key` - reads attr.id and passes pointer to psa_parse_key_data_from_storage
* `psa_parse_key_data_from_storage` - writes to many attributes
* `psa_get_and_lock_key_slot` - writes to attr.id, attr.lifetime, and attr.policy.usage
* `psa_purge_key` - reads attr.lifetime, calls psa_wipe_key_slot
* `mbedtls_psa_get_stats` - reads attr.lifetime, attr.id
`psa_crypto.c`:
* `psa_get_and_lock_key_slot_with_policy` - reads attr.type, attr.policy.
* `psa_get_and_lock_transparent_key_slot_with_policy` - reads attr.lifetime
* `psa_destroy_key` - reads attr.lifetime, attr.id
* `psa_get_key_attributes` - copies all publicly available attributes of a key
* `psa_export_key` - copies attributes
* `psa_export_public_key` - reads attr.type, copies attributes
* `psa_start_key_creation` - writes to the whole attr structure
* `psa_validate_optional_attributes` - reads attr.type, attr.bits
* `psa_import_key` - reads attr.bits
* `psa_copy_key` - reads attr.bits, attr.type, attr.lifetime, attr.policy
* `psa_mac_setup` - copies whole attr structure
* `psa_mac_compute_internal` - copies whole attr structure
* `psa_verify_internal` - copies whole attr structure
* `psa_sign_internal` - copies whole attr structure, reads attr.type
* `psa_assymmetric_encrypt` - reads attr.type
* `psa_assymetric_decrypt` - reads attr.type
* `psa_cipher_setup` - copies whole attr structure, reads attr.type
* `psa_cipher_encrypt` - copies whole attr structure, reads attr.type
* `psa_cipher_decrypt` - copies whole attr structure, reads attr.type
* `psa_aead_encrypt` - copies whole attr structure
* `psa_aead_decrypt` - copies whole attr structure
* `psa_aead_setup` - copies whole attr structure
* `psa_generate_derived_key_internal` - reads attr.type, writes to and reads from attr.bits, copies whole attr structure
* `psa_key_derivation_input_key` - reads attr.type
* `psa_key_agreement_raw_internal` - reads attr.type and attr.bits
##### Determining whether a key slot is occupied
`psa_is_key_slot_occupied` currently uses the `attr.type` field to determine whether a key slot is occupied. This works because we maintain the invariant that an occupied slot contains key material. With concurrency, it is desirable to allow a key slot to be reserved, but not yet contain key material or even metadata. When creating a key, determining the key type can be costly, for example when loading a persistent key from storage or (not yet implemented) when importing or unwrapping a key using an interface that determines the key type from the data that it parses. So we should not need to hold the global key store lock while the key type is undetermined.
Instead, `psa_is_key_slot_occupied` should use the key identifier to decide whether a slot is occupied. The key identifier is always readily available: when allocating a slot for a persistent key, it's an input of the function that allocates the key slot; when allocating a slot for a volatile key, the identifier is calculated from the choice of slot.
Alternatively, we could use a dedicated indicator that the slot is occupied. The advantage of this is that no field of the `attr` structure would be needed to determine the slot state. This would be a clean separation between key attributes and slot state and `attr` could be treated exactly like key slot content. This would save code size and maintenance effort. The cost of it would be that each slot would need an extra field to indicate whether it is occupied.
##### Key slot content
Other than what is used to determine the [“key slot state”](#key-slot-state), the contents of a key slot are only accessed as follows:
* Modification during key creation (between `psa_start_key_creation` and `psa_finish_key_creation` or `psa_fail_key_creation`).
* Destruction in `psa_wipe_key_slot`.
* Read in many functions, between calls to `psa_lock_key_slot` and `psa_unlock_key_slot`.
**slot->key access:**
* `psa_allocate_buffer_to_slot` - allocates key.data, sets key.bytes;
* `psa_copy_key_material_into_slot` - writes to key.data
* `psa_remove_key_data_from_memory` - writes and reads to/from key data
* `psa_get_key_attributes` - reads from key data
* `psa_export_key` - passes key data to psa_driver_wrapper_export_key
* `psa_export_public_key` - passes key data to psa_driver_wrapper_export_public_key
* `psa_finish_key_creation` - passes key data to psa_save_persistent_key
* `psa_validate_optional_attributes` - passes key data and bytes to mbedtls_psa_rsa_load_representation
* `psa_import_key` - passes key data to psa_driver_wrapper_import_key
* `psa_copy_key` - passes key data to psa_driver_wrapper_copy_key, psa_copy_key_material_into_slot
* `psa_mac_setup` - passes key data to psa_driver_wrapper_mac_sign_setup, psa_driver_wrapper_mac_verify_setup
* `psa_mac_compute_internal` - passes key data to psa_driver_wrapper_mac_compute
* `psa_sign_internal` - passes key data to psa_driver_wrapper_sign_message, psa_driver_wrapper_sign_hash
* `psa_verify_internal` - passes key data to psa_driver_wrapper_verify_message, psa_driver_wrapper_verify_hash
* `psa_asymmetric_encrypt` - passes key data to mbedtls_psa_rsa_load_representation
* `psa_asymmetric_decrypt` - passes key data to mbedtls_psa_rsa_load_representation
* `psa_cipher_setup ` - passes key data to psa_driver_wrapper_cipher_encrypt_setup and psa_driver_wrapper_cipher_decrypt_setup
* `psa_cipher_encrypt` - passes key data to psa_driver_wrapper_cipher_encrypt
* `psa_cipher_decrypt` - passes key data to psa_driver_wrapper_cipher_decrypt
* `psa_aead_encrypt` - passes key data to psa_driver_wrapper_aead_encrypt
* `psa_aead_decrypt` - passes key data to psa_driver_wrapper_aead_decrypt
* `psa_aead_setup` - passes key data to psa_driver_wrapper_aead_encrypt_setup and psa_driver_wrapper_aead_decrypt_setup
* `psa_generate_derived_key_internal` - passes key data to psa_driver_wrapper_import_key
* `psa_key_derivation_input_key` - passes key data to psa_key_derivation_input_internal
* `psa_key_agreement_raw_internal` - passes key data to mbedtls_psa_ecp_load_representation
* `psa_generate_key` - passes key data to psa_driver_wrapper_generate_key
#### Random generator
The PSA RNG can be accessed both from various PSA functions, and from application code via `mbedtls_psa_get_random`.
With the built-in RNG implementations using `mbedtls_ctr_drbg_context` or `mbedtls_hmac_drbg_context`, querying the RNG with `mbedtls_xxx_drbg_random()` is thread-safe (protected by a mutex inside the RNG implementation), but other operations (init, free, seed) are not.
When `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` is enabled, thread safety depends on the implementation.
#### Driver resources
Depends on the driver. The PSA driver interface specification does not discuss whether drivers must support concurrent calls.
### Simple global lock strategy
Have a single mutex protecting all accesses to the key store and other global variables. In practice, this means every PSA API function needs to take the lock on entry and release on exit, except for:
* Hash function.
* Accessors for key attributes and other local structures.
Note that operation functions do need to take the lock, since they need to prevent the destruction of the key.
Note that this does not protect access to the RNG via `mbedtls_psa_get_random`, which is guaranteed to be thread-safe when `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` is disabled.
This approach is conceptually simple, but requires extra instrumentation to every function and has bad performance in a multithreaded environment since a slow operation in one thread blocks unrelated operations on other threads.
### Global lock excluding slot content
Have a single mutex protecting all accesses to the key store and other global variables, except that it's ok to access the content of a key slot without taking the lock if one of the following conditions holds:
* The key slot is in a state that guarantees that the thread has exclusive access.
* The key slot is in a state that guarantees that no other thread can modify the slot content, and the accessing thread is only reading the slot.
Note that a thread must hold the global mutex when it reads or changes a slot's state.
#### Slot states
For concurrency purposes, a slot can be in one of four states:
* EMPTY: no thread is currently accessing the slot, and no information is stored in the slot. Any thread is able to change the slot's state to FILLING and begin loading data.
* FILLING: one thread is currently loading or creating material to fill the slot, this thread is responsible for the next state transition. Other threads cannot read the contents of a slot which is in FILLING.
* FULL: the slot contains a key, and any thread is able to use the key after registering as a reader.
* PENDING_DELETION: the key within the slot has been destroyed or marked for destruction, but at least one thread is still registered as a reader. No thread can register to read this slot. The slot must not be wiped until the last reader de-registers, wiping the slot by calling `psa_wipe_key_slot`.
To change `slot` to state `new_state`, a function must call `psa_slot_state_transition(slot, new_state)`.
A counter field within each slot keeps track of how many readers have registered. Library functions must call `psa_register_read` before reading the key data within a slot, and `psa_unregister_read` after they have finished operating.
Any call to `psa_slot_state_transition`, `psa_register_read` or `psa_unregister_read` must be performed by a thread which holds the global mutex.
##### Linearizability of the system
To satisfy the requirements in [Correctness out of the box](#correctness-out-of-the-box), we require our functions to be "linearizable" (under certain constraints). This means that any (constraint satisfying) set of concurrent calls are performed as if they were executed in some sequential order.
The standard way of reasoning that this is the case is to identify a "linearization point" for each call, this is a single execution step where the function takes effect (this is usually a step in which the effects of the call become visible to other threads). If every call has a linearization point, the set of calls is equivalent to sequentially performing the calls in order of when their linearization point occurred.
We only require linearizability to hold in the case where a resource-management error is not returned. In a set of concurrent calls, it is permitted for a call c to fail with a PSA_ERROR_INSUFFICIENT_MEMORY return code even if there does not exist a sequential ordering of the calls in which c returns this error. Even if such an error occurs, all calls are still required to be functionally correct.
We only access and modify a slot's state and reader count while we hold the global lock. This ensures the memory in which these fields are stored is correctly synchronized. It also ensures that the key data within the slot is synchronised where needed (the writer unlocks the mutex after filling the data, and any reader must lock the mutex before reading the data).
To help justify that our system is linearizable, here is a list of key slot state changing functions and their linearization points (for the sake of brevity not all failure cases are covered, but those cases are not complex):
* `psa_wipe_key_slot, psa_register_read, psa_unregister_read, psa_slot_state_transition,` - These functions are all always performed under the global mutex, so they have no effects visible to other threads (this implies that they are linearizable).
* `psa_get_empty_key_slot, psa_get_and_lock_key_slot_in_memory, psa_load_X_key_into_slot, psa_fail_key_creation` - These functions hold the mutex for all non-setup/finalizing code, their linearization points are the release of the mutex.
* `psa_get_and_lock_key_slot` - If the key is already in a slot, the linearization point is the linearization point of the call to `psa_get_and_lock_key_slot_in_memory`. If the key is not in a slot and is loaded into one, the linearization point is the linearization point of the call to `psa_load_X_key_into_slot`.
* `psa_start_key_creation` - From the perspective of other threads, the only effect of a successful call to this function is that the amount of usable resources decreases (a key slot which was usable is now unusable). Since we do not consider resource management as linearizable behaviour, when arguing for linearizability of the system we consider this function to have no visible effect to other threads.
* `psa_finish_key_creation` - On a successful load, we lock the mutex and set the state of the slot to FULL, the linearization point is then the following unlock. On an unsuccessful load, the linearization point is when we return - no action we have performed has been made visible to another thread as the slot is still in a FILLING state.
* `psa_destroy_key, psa_close_key, psa_purge_key` - As per the requirements, we need only argue for the case where the key is not in use here. The linearization point is the unlock after wiping the data and setting the slot state to EMPTY.
* `psa_import_key, psa_copy_key, psa_generate_key, mbedtls_psa_register_se_key` - These functions call both `psa_start_key_creation` and `psa_finish_key_creation`, the linearization point of a successful call is the linearization point of the call to `psa_finish_key_creation`. The linearization point of an unsuccessful call is the linearization point of the call to `psa_fail_key_creation`.
* `psa_key_derivation_output_key` - Same as above. If the operation object is in use by multiple threads, the behaviour need not be linearizable.
Library functions which operate on a slot will return `PSA_ERROR_BAD_STATE` if the slot is in an inappropriate state for the function at the linearization point.
##### Key slot state transition diagram
![](key-slot-state-transitions.png)
In the state transition diagram above, an arrow between two states `q1` and `q2` with label `f` indicates that if the state of a slot is `q1` immediately before `f`'s linearization point, it may be `q2` immediately after `f`'s linearization point.
##### Generating the key slot state transition diagram from source
To generate the state transition diagram in https://app.diagrams.net/, open the following url:
https://viewer.diagrams.net/?tags=%7B%7D&highlight=FFFFFF&edit=_blank&layers=1&nav=1&title=key-slot-state-transitions#R5Vxbd5s4EP4t%2B%2BDH5iAJcXms4ySbrdtNT7qX9MWHgGyrxcABHNv59SsM2EhgDBhs3PVL0CANoBl9fDMaMkC3i%2FWDb3jzz65F7AGUrPUAjQYQAqBh9ieSbGKJIqFYMPOplXTaC57pO0mEUiJdUosEXMfQde2QerzQdB2HmCEnM3zfXfHdpq7NX9UzZiQneDYNOy%2F9h1rhPJZqUN3Lfyd0Nk%2BvDBQ9PrMw0s7JkwRzw3JXGRG6G6Bb33XD%2BGixviV2NHnpvMTj7g%2Bc3d2YT5ywyoDv4H08%2Ffvxj9VX3XGGw5cf3o9PHxJjvBn2MnngAVRspm9o0Td2OIsO7%2F8aj1Mx0585U9B5bgQTnxgW8YP07Ksv9he1bOcn3KSTzm6c2Zc1hqs5DcmzZ5jRmRVzsegK4cJmLcAOjcCLjT6la2LtVGUnJZmnN%2BKHZJ0RJZP0QNwFCf0N65KclbXEYDuPTdqrjP0T0Txj%2BlRmJB4322neG4UdJHapYSMACowkzphjfYy8nbVM2wgCavIT5btLx4pmaCSxFpscf%2FNvcmrbeMk2Rutsv9Emba1puBvEjl8y8v2QqJGOOGiNwF36Jjnul6Hhz0hY0k%2BO%2BxGLW8V522Zshwtsl8p8YhshfePXfpFBkys8uZQ92UHXwYrgE%2FFzJ6Oya1VUpOo3euancWplJKiNpymnduttu0k4wQFhzgGXjk9mNAiJv13seX9kBhkbr%2BxlwK9Xm86cyEeZQxCfCaJlSRnafkxOLKhlRTqGPgnou%2FG61Re5khc93PZx8XCAR4XOVb56RADYvTOSq3CwXAQM0g2UVJ2zxAd4mt%2BkaoAwxJ1OA9KNLasA%2Ft3np28v14nevQNvvXXwTmBYysAwKIXhHdxLWbiXjsB9c%2FCGFcEb9Au8ec%2FJgWxl7D7yDugYrFO6mXE4LzAmU4Pak59kMzEZXofUdfoM2ema6SNkJ5ohp1Qc3x1%2B51%2FF94%2Fj8eOXh17DMFIuDMNyldderTjnt18u0Lm4kXAVIz3dfRlt3b2inUZ347tvj39%2BuU4b9Y7PqF3RmepRZbPotTmdSdNOx%2BgM7BWdgRJ7%2BWkyVAGLJmWs8G9BLCs3KsAq1FTMGkhQX5XrAEUgTfJ5yY5WyHXYFSdk4YWbLeEJbDfsMdlJF1Qfuc5OjXwuegOKXtTt48sNbhIwxaMuGjL1K98VYYwkpRijMDjg0QBEWawUZJAmqc1QRpYElGG%2BjgSX7DoFVow0U%2BrQYH41cVW6uE7Gmg%2FM7rKu8mCDWvEpRSvUegboKaKfgi3Npf%2B2RZaYbZwv51492dMcg6rm3FGvMEhWMecwitowb4MVQZHIoQ9ADPMBY5PplizPwzes82imSlL5fUGhPzjSX9bK9LOD%2BI6bLp7RUDYBfTA9%2B50sH%2Bkz%2Fvi0rha6CVsGFQO4lNEZjjWxXfNnhtTV0GDabkCiobVGeUtm8uyo%2BtFjf9A%2FtVEb6A%2BQxntZO1k1nr5CfC7sR0X74K3QzixwVwxrMzyz2zy9XBHw%2B5WnhyrkvATjhoAPDuVWzsQpUVGsUwhDFglC392cDl%2FtQGVvIW63jFsIpmVN4aOZdBmc6L47HN5wkNc9xsmX4LfHwKs%2BTB6Eu57AE6N3mcwa0gBnbaSCorO1uaqsZpJ7CtDrXKQjHouQVn7P4l2iIzwWl%2BrvhsfmyyOup9JFbo3gsegeC47bEvh1kUgsNGT7%2BxSXxrfW6BzsFV4iIbzFTesukCpkCSvG72153HXtRZQumlYiRF3YcmqLPqVZzC4ThIWzc5ZKrspbEzwMdbg1UTUtiHsNKwpoCitCPZfSXfFtMSMprufiQsLeAkprhVwRoECekbQVj%2FG7GF0UchXb9UxV%2FcehoQkMNYcTXBFO%2BhXVwQNJ%2BNpwAgWWonRXHlrsdrDA7XJpoFzQUyN9tKIeyeXoryNvXr5Q26jQ2H0P1y6IAXQhEMuT3pwlz55TOohNfcESIXHSeMcSbbNAGpahrMs6RBoS9XLVGbAS0NRNA7GnyV4F6PxNqBK6UaG0%2B6HyJwJ6qTIA6ijDze%2Bso%2BxSPoToZXqpfK3%2Fz9JLT3S5Hk%2FhRNNmX9%2B%2B338yHccr%2FIyqHfLGlZw1%2BiSzM%2BpWtRC2X0VqSKgew2JeqDLc4iOZqvaoW6HPVWJuEQOzXcOaeMQPIlxxwi0ZY%2Ffk1q%2Ba2Gp6XVI7pM4JakrLN66DGpaiQAuIiGVQGIie6Pxnq6CAl6wAqu9Cv9gXl1VT%2F1VL9%2Fa74OmW%2Brk2T%2Fnkbu57gsolw4KiqrUde0WnLBnW3P9fj7j7%2Fr%2BjoLv%2FAA%3D%3D
#### Destruction of a key in use
Problem: In [Key destruction long-term requirements](#key-destruction-long-term-requirements) we require that the key slot is destroyed (by `psa_wipe_key_slot`) even while it's in use (FILLING or with at least one reader).
How do we ensure that? This needs something more sophisticated than mutexes (concurrency number >2)! Even a per-slot mutex isn't enough (we'd need a reader-writer lock).
Solution: after some team discussion, we've decided to rely on a new threading abstraction which mimics C11 (i.e. `mbedtls_fff` where `fff` is the C11 function name, having the same parameters and return type, with default implementations for C11, pthreads and Windows). We'll likely use condition variables in addition to mutexes.
##### Mutex only
When calling `psa_wipe_key_slot` it is the callers responsibility to set the slot state to PENDING_DELETION first. For most functions this is a clean {FULL, !has_readers} -> PENDING_DELETION transition: psa_get_empty_key_slot, psa_get_and_lock_key_slot, psa_close_key, psa_purge_key.
`psa_wipe_all_key_slots` is only called from `mbedtls_psa_crypto_free`, here we will need to return an error as we won't be able to free the key store if a key is in use without compromising the state of the secure side. This is acceptable as an untrusted application cannot call `mbedtls_psa_crypto_free` in a crypto service. In a service integration, `mbedtls_psa_crypto_free` on the client cuts the communication with the crypto service. Also, this is the current behaviour.
`psa_destroy_key` registers as a reader, marks the slot as deleted, deletes persistent keys and opaque keys and unregisters before returning. This will free the key ID, but the slot might be still in use. This only works if drivers are protected by a mutex (and the persistent storage as well if needed). `psa_destroy_key` transfers to PENDING_DELETION as an intermediate state. The last reading operation will wipe the key slot upon unregistering. In case of volatile keys freeing up the ID while the slot is still in use does not provide any benefit and we don't need to do it.
These are serious limitations, but this can be implemented with mutexes only and arguably satisfies the [Key destruction short-term requirements](#key-destruction-short-term-requirements).
Variations:
1. As a first step the multipart operations would lock the keys for reading on setup and release on free
2. In a later stage this would be improved by locking the keys on entry into multi-part API calls and released before exiting.
The second variant can't be implemented as a backward compatible improvement on the first as multipart operations that were successfully completed in the first case, would fail in the second. If we want to implement these incrementally, multipart operations in a multithreaded environment must be left unsupported in the first variant. This makes the first variant impractical (multipart operations returning an error in builds with multithreading enabled is not a behaviour that would be very useful to release).
We can't reuse the `lock_count` field to mark key slots deleted, as we still need to keep track the lock count while the slot is marked for deletion. This means that we will need to add a new field to key slots. This new field can be reused to indicate whether the slot is occupied (see section [Determining whether a key slot is occupied](#determining-whether-a-key-slot-is-occupied)). (There would be three states: deleted, occupied, empty.)
#### Condition variables
Clean UNUSED -> PENDING_DELETION transition works as before.
`psa_wipe_all_key_slots` and `psa_destroy_key` mark the slot as deleted and go to sleep until the slot has no registered readers. When waking up, they wipe the slot, and return.
If the slot is already marked as deleted the threads calling `psa_wipe_all_key_slots` and `psa_destroy_key` go to sleep until the deletion completes. To satisfy [Key destruction long-term requirements](#key-destruction-long-term-requirements) none of the threads may return from the call until the slot is deleted completely. This can be achieved by signalling them when the slot has already been wiped and ready for use, that is not marked for deletion anymore. To handle spurious wake-ups, these threads need to be able to tell whether the slot was already deleted. This is not trivial, because by the time the thread wakes up, theoretically the slot might be in any state. It might have been reused and maybe even marked for deletion again.
To resolve this, we can either:
1. Depend on the deletion marker. If the slot has been reused and is marked for deletion again, the threads keep waiting until the second deletion completes.
2. Introduce a uuid (eg a global counter plus a slot ID), which is recorded by the thread waiting for deletion and checks whether it matches. If it doesn't, the function can return as the slot was already reallocated. If it does match, it can check whether it is still marked for deletion, if it is, the thread goes back to sleep, if it isn't, the function can return.
##### Platform abstraction
Introducing condition variables to the platform abstraction layer would be best done in a major version. If we can't wait until that, we will need to introduce a new compile time flag. Considering that this only will be needed on the PSA Crypto side and the upcoming split, it makes sense to make this flag responsible for the entire PSA Crypto threading support. Therefore if we want to keep the option open for implementing this in a backward compatible manner, we need to introduce and use this new flag already when implementing [Mutex only](#mutex-only). (If we keep the abstraction layer for mutexes the same, this shouldn't mean increase in code size and would mean only minimal effort on the porting side.)
#### Operation contexts
Concurrent access to the same operation context can compromise the crypto service for example if the operation context has a pointer (depending on the compiler and the platform, the pointer assignment may or may not be atomic). This violates the functional correctness requirement of the crypto service. (Concurrent calls to operations is undefined behaviour, but still should not compromise the CIA of the crypto service.)
If we want to protect against this in the library, operations will need a status field protected by a global mutex similarly to key slots. On entry, API calls would check the state and return an error if it is already ACTIVE. Otherwise they set it to ACTIVE and restore it to INACTIVE before returning.
Alternatively, protecting operation contexts can be left as the responsibility of the crypto service. The [PSA Crypto API Specification](https://arm-software.github.io/psa-api/crypto/1.1/overview/conventions.html#concurrent-calls) does not require the library to provide any protection in this case. A crypto service can easily add its own mutex in its operation structure wrapper (the same structure where it keeps track of which client connection owns that operation object).
#### Drivers
Each driver that hasnt got the "thread_safe” property set has a dedicated mutex.
Implementing "thread_safe” drivers depends on the condition variable protection in the key store, as we must guarantee that the core never starts the destruction of a key while there are operations in progress on it.
Start with implementing threading for drivers without the "thread_safe” property (all drivers behave like the property wasn't set). Add "thread_safe" drivers at some point after the [Condition variables](#condition-variables) approach is implemented in the core.
##### Reentrancy
It is natural sometimes to want to perform cryptographic operations from a driver, for example calculating a hash as part of various other crypto primitives, or using a block cipher in a driver for a mode, etc. Also encrypting/authenticating communication with a secure element.
**Non-thread-safe drivers:**
A driver is non-thread-safe if the `thread-safe` property (see [Driver requirements](#driver-requirements)) is set to false.
In the non-thread-safe case we have these natural assumptions/requirements:
1. Drivers don't call the core for any operation for which they provide an entry point
2. The core doesn't hold the driver mutex between calls to entry points
With these, the only way of a deadlock is when we have several drivers and they have circular dependencies. That is, Driver A makes a call that is despatched to Driver B and upon executing that Driver B makes a call that is despatched to Driver A. For example Driver A does CCM calls Driver B to do CBC-MAC, which in turn calls Driver A to do AES. This example is pretty contrived and it is hard to find a more practical example.
Potential ways for resolving this:
1. Non-thread-safe drivers must not call the core
2. Provide a new public API that drivers can safely call
3. Make the dispatch layer public for drivers to call
4. There is a whitelist of core APIs that drivers can call. Drivers providing entry points to these must not make a call to the core when handling these calls. (Drivers are still allowed to call any core API that can't have a driver entry point.)
The first is too restrictive, the second and the third would require making it a stable API, and would likely increase the code size for a relatively rare feature. We are choosing the fourth as that is the most viable option.
**Thread-safe drivers:**
A driver is non-thread-safe if the `thread-safe` property (see [Driver requirements](#driver-requirements)) is set to true.
To make reentrancy in non-thread-safe drivers work, thread-safe drivers must not make a call to the core when handling a call that is on the non-thread-safe driver core API whitelist.
Thread-safe drivers have less guarantees from the core and need to implement more complex logic and we can reasonably expect them to be more flexible in terms of reentrancy as well. At this point it is hard to see what further guarantees would be useful and feasible. Therefore, we don't provide any further guarantees for now.
Thread-safe drivers must not make any assumption about the operation of the core beyond what is discussed in the [Reentrancy](#reentrancy) and [Driver requirements](#driver-requirements) sections.
#### Global data
PSA Crypto makes use of a `global_data` variable that will be accessible from multiple threads and needs to be protected. Any function accessing this variable (or its members) must take the corresponding lock first. Since `global_data` holds the RNG state, these will involve relatively expensive operations and therefore ideally `global_data` should be protected by its own, dedicated lock (different from the one protecting the key store).
Note that this does not protect access to the RNG via `mbedtls_psa_get_random`, which is guaranteed to be thread-safe when `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` is disabled. Still, doing so is conceptually simpler and we probably will want to remove the lower level mutex in the long run, since the corresponding interface will be removed from the public API. The two mutexes are different and are always taken in the same order, there is no risk of deadlock.
The purpose of `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` is very similar to the driver interface (and might even be added to it in the long run), therefore it makes sense to handle it the same way. In particular, we can use the `global_data` mutex to protect it as a default and when we implement the "thread_safe” property for drivers, we implement it for `MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG` as well.
#### Implementation notes
Since we only have simple mutexes, locking the same mutex from the same thread is a deadlock. Therefore functions taking the global mutex must not be called while holding the same mutex. Functions taking the mutex will document this fact and the implications.
Releasing the mutex before a function call might introduce race conditions. Therefore might not be practical to take the mutex in low level access functions. If functions like that don't take the mutex, they need to rely on the caller to take it for them. These functions will document that the caller is required to hold the mutex.
To avoid performance degradation, functions must hold mutexes for as short time as possible. In particular, they must not start expensive operations (eg. doing cryptography) while holding the mutex.
## Strategy for 3.6
The goal is to provide viable threading support without extending the platform abstraction. (Condition variables should be added in 4.0.) This means that we will be relying on mutexes only.
- Key Store
- Slot states are described in the [Slot states](#slot-states) section. They guarantee safe concurrent access to slot contents.
- Slot states will be protected by a global mutex as described in the introduction of the [Global lock excluding slot content](#global-lock-excluding-slot-content) section.
- Simple key destruction strategy as described in the [Mutex only](#mutex-only) section (variant 2).
- The slot state and key attributes will be separated as described in the last paragraph of the [Determining whether a key slot is occupied](#determining-whether-a-key-slot-is-occupied) section.
- The main `global_data` (the one in `psa_crypto.c`) shall be protected by its own mutex as described in the [Global data](#global-data) section.
- The solution shall use the pre-existing `MBEDTLS_THREADING_C` threading abstraction. That is, the flag proposed in the [Platform abstraction](#platform-abstraction) section won't be implemented.
- The core makes no additional guarantees for drivers. That is, Policy 1 in section [Driver requirements](#driver-requirements) applies.

View File

@@ -0,0 +1,133 @@
# Mbed TLS driver interface test strategy
This document describes the test strategy for the driver interfaces in Mbed TLS. Mbed TLS has interfaces for secure element drivers, accelerator drivers and entropy drivers. This document is about testing Mbed TLS itself; testing drivers is out of scope.
The driver interfaces are standardized through PSA Cryptography functional specifications.
## Secure element driver interface testing
### Secure element driver interfaces
#### Opaque driver interface
The [unified driver interface](../../proposed/psa-driver-interface.md) supports both transparent drivers (for accelerators) and opaque drivers (for secure elements).
Drivers exposing this interface need to be registered at compile time by declaring their JSON description file.
#### Dynamic secure element driver interface
The dynamic secure element driver interface (SE interface for short) is defined by [`psa/crypto_se_driver.h`](../../../include/psa/crypto_se_driver.h). This is an interface between Mbed TLS and one or more third-party drivers.
The SE interface consists of one function provided by Mbed TLS (`psa_register_se_driver`) and many functions that drivers must implement. To make a driver usable by Mbed TLS, the initialization code must call `psa_register_se_driver` with a structure that describes the driver. The structure mostly contains function pointers, pointing to the driver's methods. All calls to a driver function are triggered by a call to a PSA crypto API function.
### SE driver interface unit tests
This section describes unit tests that must be implemented to validate the secure element driver interface. Note that a test case may cover multiple requirements; for example a “good case” test can validate that the proper function is called, that it receives the expected inputs and that it produces the expected outputs.
Many SE driver interface unit tests could be covered by running the existing API tests with a key in a secure element.
#### SE driver registration
This applies to dynamic drivers only.
* Test `psa_register_se_driver` with valid and with invalid arguments.
* Make at least one failing call to `psa_register_se_driver` followed by a successful call.
* Make at least one test that successfully registers the maximum number of drivers and fails to register one more.
#### Dispatch to SE driver
For each API function that can lead to a driver call (more precisely, for each driver method call site, but this is practically equivalent):
* Make at least one test with a key in a secure element that checks that the driver method is called. A few API functions involve multiple driver methods; these should validate that all the expected driver methods are called.
* Make at least one test with a key that is not in a secure element that checks that the driver method is not called.
* Make at least one test with a key in a secure element with a driver that does not have the requisite method (i.e. the method pointer is `NULL`) but has the substructure containing that method, and check that the return value is `PSA_ERROR_NOT_SUPPORTED`.
* Make at least one test with a key in a secure element with a driver that does not have the substructure containing that method (i.e. the pointer to the substructure is `NULL`), and check that the return value is `PSA_ERROR_NOT_SUPPORTED`.
* At least one test should register multiple drivers with a key in each driver and check that the expected driver is called. This does not need to be done for all operations (use a white-box approach to determine if operations may use different code paths to choose the driver).
* At least one test should register the same driver structure with multiple lifetime values and check that the driver receives the expected lifetime value.
Some methods only make sense as a group (for example a driver that provides the MAC methods must provide all or none). In those cases, test with all of them null and none of them null.
#### SE driver inputs
For each API function that can lead to a driver call (more precisely, for each driver method call site, but this is practically equivalent):
* Wherever the specification guarantees parameters that satisfy certain preconditions, check these preconditions whenever practical.
* If the API function can take parameters that are invalid and must not reach the driver, call the API function with such parameters and verify that the driver method is not called.
* Check that the expected inputs reach the driver. This may be implicit in a test that checks the outputs if the only realistic way to obtain the correct outputs is to start from the expected inputs (as is often the case for cryptographic material, but not for metadata).
#### SE driver outputs
For each API function that leads to a driver call, call it with parameters that cause a driver to be invoked and check how Mbed TLS handles the outputs.
* Correct outputs.
* Incorrect outputs such as an invalid output length.
* Expected errors (e.g. `PSA_ERROR_INVALID_SIGNATURE` from a signature verification method).
* Unexpected errors. At least test that if the driver returns `PSA_ERROR_GENERIC_ERROR`, this is propagated correctly.
Key creation functions invoke multiple methods and need more complex error handling:
* Check the consequence of errors detected at each stage (slot number allocation or validation, key creation method, storage accesses).
* Check that the storage ends up in the expected state. At least make sure that no intermediate file remains after a failure.
#### Persistence of SE keys
The following tests must be performed at least one for each key creation method (import, generate, ...).
* Test that keys in a secure element survive `psa_close_key(); psa_open_key()`.
* Test that keys in a secure element survive `mbedtls_psa_crypto_free(); psa_crypto_init()`.
* Test that the driver's persistent data survives `mbedtls_psa_crypto_free(); psa_crypto_init()`.
* Test that `psa_destroy_key()` does not leave any trace of the key.
#### Resilience for SE drivers
Creating or removing a key in a secure element involves multiple storage modifications (M<sub>1</sub>, ..., M<sub>n</sub>). If the operation is interrupted by a reset at any point, it must be either rolled back or completed.
* For each potential interruption point (before M<sub>1</sub>, between M<sub>1</sub> and M<sub>2</sub>, ..., after M<sub>n</sub>), call `mbedtls_psa_crypto_free(); psa_crypto_init()` at that point and check that this either rolls back or completes the operation that was started.
* This must be done for each key creation method and for key destruction.
* This must be done for each possible flow, including error cases (e.g. a key creation that fails midway due to `OUT_OF_MEMORY`).
* The recovery during `psa_crypto_init` can itself be interrupted. Test those interruptions too.
* Two things need to be tested: the key that is being created or destroyed, and the driver's persistent storage.
* Check both that the storage has the expected content (this can be done by e.g. using a key that is supposed to be present) and does not have any unexpected content (for keys, this can be done by checking that `psa_open_key` fails with `PSA_ERROR_DOES_NOT_EXIST`).
This requires instrumenting the storage implementation, either to force it to fail at each point or to record successive storage states and replay each of them. Each `psa_its_xxx` function call is assumed to be atomic.
### SE driver system tests
#### Real-world use case
We must have at least one driver that is close to real-world conditions:
* With its own source tree.
* Running on actual hardware.
* Run the full driver validation test suite (which does not yet exist).
* Run at least one test application (e.g. the Mbed OS TLS example).
This requirement shall be fulfilled by the [Microchip ATECC508A driver](https://github.com/ARMmbed/mbed-os-atecc608a/).
#### Complete driver
We should have at least one driver that covers the whole interface:
* With its own source tree.
* Implementing all the methods.
* Run the full driver validation test suite (which does not yet exist).
A PKCS#11 driver would be a good candidate. It would be useful as part of our product offering.
## Transparent driver interface testing
The [unified driver interface](../../proposed/psa-driver-interface.md) defines interfaces for accelerators.
### Test requirements
#### Requirements for transparent driver testing
Every cryptographic mechanism for which a transparent driver interface exists (key creation, cryptographic operations, …) must be exercised in at least one build. The test must verify that the driver code is called.
#### Requirements for fallback
The driver interface includes a fallback mechanism so that a driver can reject a request at runtime and let another driver handle the request. For each entry point, there must be at least three test runs with two or more drivers available with driver A configured to fall back to driver B, with one run where A returns `PSA_SUCCESS`, one where A returns `PSA_ERROR_NOT_SUPPORTED` and B is invoked, and one where A returns a different error and B is not invoked.
## Entropy and randomness interface testing
TODO

View File

@@ -0,0 +1,367 @@
# Mbed TLS invasive testing strategy
## Introduction
In Mbed TLS, we use black-box testing as much as possible: test the documented behavior of the product, in a realistic environment. However this is not always sufficient.
The goal of this document is to identify areas where black-box testing is insufficient and to propose solutions.
This is a test strategy document, not a test plan. A description of exactly what is tested is out of scope.
This document is structured as follows:
* [“Rules”](#rules) gives general rules and is written for brevity.
* [“Requirements”](#requirements) explores the reasons why invasive testing is needed and how it should be done.
* [“Possible approaches”](#possible-approaches) discusses some general methods for non-black-box testing.
* [“Solutions”](#solutions) explains how we currently solve, or intend to solve, specific problems.
### TLS
This document currently focuses on data structure manipulation and storage, which is what the crypto/keystore and X.509 parts of the library are about. More work is needed to fully take TLS into account.
## Rules
Always follow these rules unless you have a good reason not to. If you deviate, document the rationale somewhere.
See the section [“Possible approaches”](#possible-approaches) for a rationale.
### Interface design for testing
Do not add test-specific interfaces if there's a practical way of doing it another way. All public interfaces should be useful in at least some configurations. Features with a significant impact on the code size or attack surface should have a compile-time guard.
### Reliance on internal details
In unit tests and in test programs, it's ok to include internal header files from `library/`. Do not define non-public interfaces in public headers. In contrast, sample programs must not include header files from `library/`.
Sometimes it makes sense to have unit tests on functions that aren't part of the public API. Declare such functions in `library/*.h` and include the corresponding header in the test code. If the function should be `static` for optimization but can't be `static` for testing, declare it as `MBEDTLS_STATIC_TESTABLE`, and make the tests that use it depend on `MBEDTLS_TEST_HOOKS` (see [“rules for compile-time options”](#rules-for-compile-time-options)).
If test code or test data depends on internal details of the library and not just on its documented behavior, add a comment in the code that explains the dependency. For example:
> ```
> /* This test file is specific to the ITS implementation in PSA Crypto
> * on top of stdio. It expects to know what the stdio name of a file is
> * based on its keystore name.
> */
> ```
> ```
> # This test assumes that PSA_MAX_KEY_BITS (currently 65536-8 bits = 8191 bytes
> # and not expected to be raised any time soon) is less than the maximum
> # output from HKDF-SHA512 (255*64 = 16320 bytes).
> ```
### Rules for compile-time options
If the most practical way to test something is to add code to the product that is only useful for testing, do so, but obey the following rules. For more information, see the [rationale](#guidelines-for-compile-time-options).
* **Only use test-specific code when necessary.** Anything that can be tested through the documented API must be tested through the documented API.
* **Test-specific code must be guarded by `#if defined(MBEDTLS_TEST_HOOKS)`**. Do not create fine-grained guards for test-specific code.
* **Do not use `MBEDTLS_TEST_HOOKS` for security checks or assertions.** Security checks belong in the product.
* **Merely defining `MBEDTLS_TEST_HOOKS` must not change the behavior**. It may define extra functions. It may add fields to structures, but if so, make it very clear that these fields have no impact on non-test-specific fields.
* **Where tests must be able to change the behavior, do it by function substitution.** See [“rules for function substitution”](#rules-for-function-substitution) for more details.
#### Rules for function substitution
This section explains how to replace a library function `mbedtls_foo()` by alternative code for test purposes. That is, library code calls `mbedtls_foo()`, and there is a mechanism to arrange for these calls to invoke different code.
Often `mbedtls_foo` is a macro which is defined to be a system function (like `mbedtls_calloc` or `mbedtls_fopen`), which we replace to mock or wrap the system function. This is useful to simulate I/O failure, for example. Note that if the macro can be replaced at compile time to support alternative platforms, the test code should be compatible with this compile-time configuration so that it works on these alternative platforms as well.
Sometimes the substitutable function is a `static inline` function that does nothing (not a macro, to avoid accidentally skipping side effects in its parameters), to provide a hook for test code; such functions should have a name that starts with the prefix `mbedtls_test_hook_`. In such cases, the function should generally not modify its parameters, so any pointer argument should be const. The function should return void.
With `MBEDTLS_TEST_HOOKS` set, `mbedtls_foo` is a global variable of function pointer type. This global variable is initialized to the system function, or to a function that does nothing. The global variable is defined in a header in the `library` directory such as `psa_crypto_invasive.h`. This is similar to the platform function configuration mechanism with `MBEDTLS_PLATFORM_xxx_ALT`.
In unit test code that needs to modify the internal behavior:
* The test function (or the whole test file) must depend on `MBEDTLS_TEST_HOOKS`.
* At the beginning of the test function, set the global function pointers to the desired value.
* In the test function's cleanup code, restore the global function pointers to their default value.
## Requirements
### General goals
We need to balance the following goals, which are sometimes contradictory.
* Coverage: we need to test behaviors which are not easy to trigger by using the API or which cannot be triggered deterministically, for example I/O failures.
* Correctness: we want to test the actual product, not a modified version, since conclusions drawn from a test of a modified product may not apply to the real product.
* Effacement: the product should not include features that are solely present for test purposes, since these increase the attack surface and the code size.
* Portability: tests should work on every platform. Skipping tests on certain platforms may hide errors that are only apparent on such platforms.
* Maintainability: tests should only enforce the documented behavior of the product, to avoid extra work when the product's internal or implementation-specific behavior changes. We should also not give the impression that whatever the tests check is guaranteed behavior of the product which cannot change in future versions.
Where those goals conflict, we should at least mitigate the goals that cannot be fulfilled, and document the architectural choices and their rationale.
### Problem areas
#### Allocation
Resource allocation can fail, but rarely does so in a typical test environment. How does the product cope if some allocations fail?
Resources include:
* Memory.
* Files in storage (PSA API only — in the Mbed TLS API, black-box unit tests are sufficient).
* Key slots (PSA API only).
* Key slots in a secure element (PSA SE HAL).
* Communication handles (PSA crypto service only).
#### Storage
Storage can fail, either due to hardware errors or to active attacks on trusted storage. How does the code cope if some storage accesses fail?
We also need to test resilience: if the system is reset during an operation, does it restart in a correct state?
#### Cleanup
When code should clean up resources, how do we know that they have truly been cleaned up?
* Zeroization of confidential data after use.
* Freeing memory.
* Freeing key slots.
* Freeing key slots in a secure element.
* Deleting files in storage (PSA API only).
#### Internal data
Sometimes it is useful to peek or poke internal data.
* Check consistency of internal data (e.g. output of key generation).
* Check the format of files (which matters so that the product can still read old files after an upgrade).
* Inject faults and test corruption checks inside the product.
## Possible approaches
Key to requirement tables:
* ++ requirement is fully met
* \+ requirement is mostly met
* ~ requirement is partially met but there are limitations
* ! requirement is somewhat problematic
* !! requirement is very problematic
### Fine-grained public interfaces
We can include all the features we want to test in the public interface. Then the tests can be truly black-box. The limitation of this approach is that this requires adding a lot of interfaces that are not useful in production. These interfaces have costs: they increase the code size, the attack surface, and the testing burden (exponentially, because we need to test all these interfaces in combination).
As a rule, we do not add public interfaces solely for testing purposes. We only add public interfaces if they are also useful in production, at least sometimes. For example, the main purpose of `mbedtls_psa_crypto_free` is to clean up all resources in tests, but this is also useful in production in some applications that only want to use PSA Crypto during part of their lifetime.
Mbed TLS traditionally has very fine-grained public interfaces, with many platform functions that can be substituted (`MBEDTLS_PLATFORM_xxx` macros). PSA Crypto has more opacity and less platform substitution macros.
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ~ Many useful tests are not reasonably achievable |
| Correctness | ++ Ideal |
| Effacement | !! Requires adding many otherwise-useless interfaces |
| Portability | ++ Ideal; the additional interfaces may be useful for portability beyond testing |
| Maintainability | !! Combinatorial explosion on the testing burden |
| | ! Public interfaces must remain for backward compatibility even if the test architecture changes |
### Fine-grained undocumented interfaces
We can include all the features we want to test in undocumented interfaces. Undocumented interfaces are described in public headers for the sake of the C compiler, but are described as “do not use” in comments (or not described at all) and are not included in Doxygen-rendered documentation. This mitigates some of the downsides of [fine-grained public interfaces](#fine-grained-public-interfaces), but not all. In particular, the extra interfaces do increase the code size, the attack surface and the test surface.
Mbed TLS traditionally has a few internal interfaces, mostly intended for cross-module abstraction leakage rather than for testing. For the PSA API, we favor [internal interfaces](#internal-interfaces).
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ~ Many useful tests are not reasonably achievable |
| Correctness | ++ Ideal |
| Effacement | !! Requires adding many otherwise-useless interfaces |
| Portability | ++ Ideal; the additional interfaces may be useful for portability beyond testing |
| Maintainability | ! Combinatorial explosion on the testing burden |
### Internal interfaces
We can write tests that call internal functions that are not exposed in the public interfaces. This is nice when it works, because it lets us test the unchanged product without compromising the design of the public interface.
A limitation is that these interfaces must exist in the first place. If they don't, this has mostly the same downside as public interfaces: the extra interfaces increase the code size and the attack surface for no direct benefit to the product.
Another limitation is that internal interfaces need to be used correctly. We may accidentally rely on internal details in the tests that are not necessarily always true (for example that are platform-specific). We may accidentally use these internal interfaces in ways that don't correspond to the actual product.
This approach is mostly portable since it only relies on C interfaces. A limitation is that the test-only interfaces must not be hidden at link time (but link-time hiding is not something we currently do). Another limitation is that this approach does not work for users who patch the library by replacing some modules; this is a secondary concern since we do not officially offer this as a feature.
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ~ Many useful tests require additional internal interfaces |
| Correctness | + Does not require a product change |
| | ~ The tests may call internal functions in a way that does not reflect actual usage inside the product |
| Effacement | ++ Fine as long as the internal interfaces aren't added solely for test purposes |
| Portability | + Fine as long as we control how the tests are linked |
| | ~ Doesn't work if the users rewrite an internal module |
| Maintainability | + Tests interfaces that are documented; dependencies in the tests are easily noticed when changing these interfaces |
### Static analysis
If we guarantee certain properties through static analysis, we don't need to test them. This puts some constraints on the properties:
* We need to have confidence in the specification (but we can gain this confidence by evaluating the specification on test data).
* This does not work for platform-dependent properties unless we have a formal model of the platform.
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ~ Good for platform-independent properties, if we can guarantee them statically |
| Correctness | + Good as long as we have confidence in the specification |
| Effacement | ++ Zero impact on the code |
| Portability | ++ Zero runtime burden |
| Maintainability | ~ Static analysis is hard, but it's also helpful |
### Compile-time options
If there's code that we want to have in the product for testing, but not in production, we can add a compile-time option to enable it. This is very powerful and usually easy to use, but comes with a major downside: we aren't testing the same code anymore.
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ++ Most things can be tested that way |
| Correctness | ! Difficult to ensure that what we test is what we run |
| Effacement | ++ No impact on the product when built normally or on the documentation, if done right |
| | ! Risk of getting “no impact” wrong |
| Portability | ++ It's just C code so it works everywhere |
| | ~ Doesn't work if the users rewrite an internal module |
| Maintainability | + Test interfaces impact the product source code, but at least they're clearly marked as such in the code |
#### Guidelines for compile-time options
* **Minimize the number of compile-time options.**<br>
Either we're testing or we're not. Fine-grained options for testing would require more test builds, especially if combinatorics enters the play.
* **Merely enabling the compile-time option should not change the behavior.**<br>
When building in test mode, the code should have exactly the same behavior. Changing the behavior should require some action at runtime (calling a function or changing a variable).
* **Minimize the impact on code**.<br>
We should not have test-specific conditional compilation littered through the code, as that makes the code hard to read.
### Runtime instrumentation
Some properties can be tested through runtime instrumentation: have the compiler or a similar tool inject something into the binary.
* Sanitizers check for certain bad usage patterns (ASan, MSan, UBSan, Valgrind).
* We can inject external libraries at link time. This can be a way to make system functions fail.
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ! Limited scope |
| Correctness | + Instrumentation generally does not affect the program's functional behavior |
| Effacement | ++ Zero impact on the code |
| Portability | ~ Depends on the method |
| Maintainability | ~ Depending on the instrumentation, this may require additional builds and scripts |
| | + Many properties come for free, but some require effort (e.g. the test code itself must be leak-free to avoid false positives in a leak detector) |
### Debugger-based testing
If we want to do something in a test that the product isn't capable of doing, we can use a debugger to read or modify the memory, or hook into the code at arbitrary points.
This is a very powerful approach, but it comes with limitations:
* The debugger may introduce behavior changes (e.g. timing). If we modify data structures in memory, we may do so in a way that the code doesn't expect.
* Due to compiler optimizations, the memory may not have the layout that we expect.
* Writing reliable debugger scripts is hard. We need to have confidence that we're testing what we mean to test, even in the face of compiler optimizations. Languages such as gdb make it hard to automate even relatively simple things such as finding the place(s) in the binary corresponding to some place in the source code.
* Debugger scripts are very much non-portable.
| Requirement | Analysis |
| ----------- | -------- |
| Coverage | ++ The sky is the limit |
| Correctness | ++ The code is unmodified, and tested as compiled (so we even detect compiler-induced bugs) |
| | ! Compiler optimizations may hinder |
| | ~ Modifying the execution may introduce divergence |
| Effacement | ++ Zero impact on the code |
| Portability | !! Not all environments have a debugger, and even if they do, we'd need completely different scripts for every debugger |
| Maintainability | ! Writing reliable debugger scripts is hard |
| | !! Very tight coupling with the details of the source code and even with the compiler |
## Solutions
This section lists some strategies that are currently used for invasive testing, or planned to be used. This list is not intended to be exhaustive.
### Memory management
#### Zeroization testing
Goal: test that `mbedtls_platform_zeroize` does wipe the memory buffer.
Solution ([debugger](#debugger-based-testing)): implemented in `tests/scripts/test_zeroize.gdb`.
Rationale: this cannot be tested by adding C code, because the danger is that the compiler optimizes the zeroization away, and any C code that observes the zeroization would cause the compiler not to optimize it away.
#### Memory cleanup
Goal: test the absence of memory leaks.
Solution ([instrumentation](#runtime-instrumentation)): run tests with ASan. (We also use Valgrind, but it's slower than ASan, so we favor ASan.)
Since we run many test jobs with a memory leak detector, each test function or test program must clean up after itself. Use the cleanup code (after the `exit` label in test functions) to free any memory that the function may have allocated.
#### Robustness against memory allocation failure
Solution: TODO. We don't test this at all at this point.
#### PSA key store memory cleanup
Goal: test the absence of resource leaks in the PSA key store code, in particular that `psa_close_key` and `psa_destroy_key` work correctly.
Solution ([internal interface](#internal-interfaces)): in most tests involving PSA functions, the cleanup code explicitly calls `PSA_DONE()` instead of `mbedtls_psa_crypto_free()`. `PSA_DONE` fails the test if the key store in memory is not empty.
Note there must also be tests that call `mbedtls_psa_crypto_free` with keys still open, to verify that it does close all keys.
`PSA_DONE` is a macro defined in `psa_crypto_helpers.h` which uses `mbedtls_psa_get_stats()` to get information about the keystore content before calling `mbedtls_psa_crypto_free()`. This feature is mostly but not exclusively useful for testing, and may be moved under `MBEDTLS_TEST_HOOKS`.
### PSA storage
#### PSA storage cleanup on success
Goal: test that no stray files are left over in the key store after a test that succeeded.
Solution: TODO. Currently the various test suites do it differently.
#### PSA storage cleanup on failure
Goal: ensure that no stray files are left over in the key store even if a test has failed (as that could cause other tests to fail).
Solution: TODO. Currently the various test suites do it differently.
#### PSA storage resilience
Goal: test the resilience of PSA storage against power failures.
Solution: TODO.
See the [secure element driver interface test strategy](driver-interface-test-strategy.html) for more information.
#### Corrupted storage
Goal: test the robustness against corrupted storage.
Solution ([internal interface](#internal-interfaces)): call `psa_its` functions to modify the storage.
#### Storage read failure
Goal: test the robustness against read errors.
Solution: TODO
#### Storage write failure
Goal: test the robustness against write errors (`STORAGE_FAILURE` or `INSUFFICIENT_STORAGE`).
Solution: TODO
#### Storage format stability
Goal: test that the storage format does not change between versions (or if it does, an upgrade path must be provided).
Solution ([internal interface](#internal-interfaces)): call internal functions to inspect the content of the file.
Note that the storage format is defined not only by the general layout, but also by the numerical values of encodings for key types and other metadata. For numerical values, there is a risk that we would accidentally modify a single value or a few values, so the tests should be exhaustive. This probably requires some compile-time analysis (perhaps the automation for `psa_constant_names` can be used here). TODO
### Other fault injection
#### PSA crypto init failure
Goal: test the failure of `psa_crypto_init`.
Solution ([compile-time option](#compile-time-options)): replace entropy initialization functions by functions that can fail. This is the only failure point for `psa_crypto_init` that is present in all builds.
When we implement the PSA entropy driver interface, this should be reworked to use the entropy driver interface.
#### PSA crypto data corruption
The PSA crypto subsystem has a few checks to detect corrupted data in memory. We currently don't have a way to exercise those checks.
Solution: TODO. To corrupt a multipart operation structure, we can do it by looking inside the structure content, but only when running without isolation. To corrupt the key store, we would need to add a function to the library or to use a debugger.

View File

@@ -0,0 +1,127 @@
# Mbed TLS PSA keystore format stability testing strategy
## Introduction
The PSA crypto subsystem includes a persistent key store. It is possible to create a persistent key and read it back later. This must work even if Mbed TLS has been upgraded in the meantime (except for deliberate breaks in the backward compatibility of the storage).
The goal of this document is to define a test strategy for the key store that not only validates that it's possible to load a key that was saved with the version of Mbed TLS under test, but also that it's possible to load a key that was saved with previous versions of Mbed TLS.
Interoperability is not a goal: PSA crypto implementations are not intended to have compatible storage formats. Downgrading is not required to work.
## General approach
### Limitations of a direct approach
The goal of storage format stability testing is: as a user of Mbed TLS, I want to store a key under version V and read it back under version W, with W ≥ V.
Doing the testing this way would be difficult because we'd need to have version V of Mbed TLS available when testing version W.
An alternative, semi-direct approach consists of generating test data under version V, and reading it back under version W. Done naively, this would require keeping a large amount of test data (full test coverage multiplied by the number of versions that we want to preserve backward compatibility with).
### Save-and-compare approach
Importing and saving a key is deterministic. Therefore we can ensure the stability of the storage format by creating test cases under a version V of Mbed TLS, where the test case parameters include both the parameters to pass to key creation and the expected state of the storage after the key is created. The test case creates a key as indicated by the parameters, then compares the actual state of the storage with the expected state.
In addition, the test case also loads the key and checks that it has the expected data and metadata. Import-and-save testing and load-and-check testing can be split into separate test functions with the same payloads.
If the test passes with version V, this means that the test data is consistent with what the implementation does. When the test later runs under version W ≥ V, it creates and reads back a storage state which is known to be identical to the state that V would have produced. Thus, this approach validates that W can read storage states created by V.
Note that it is the combination of import-and-save passing on version V and load-and-check passing on version W with the same data that proves that version W can read back what version V wrote. From the perspective of a particular version of the library, the import-and-save tests guarantee forward compatibility while the load-and-check tests guarantee backward compatibility.
Use a similar approach for files other than keys where possible and relevant.
### Keeping up with storage format evolution
Test cases should normally not be removed from the code base: if something has worked before, it should keep working in future versions, so we should keep testing it.
This cannot be enforced solely by looking at a single version of Mbed TLS, since there would be no indication that more test cases used to exist. It can only be enforced through review of library changes. The review is be assisted by a tool that compares the old and the new version, which is implemented in `scripts/abi_check.py`. This tool fails the CI if load-and-check test case disappears (changed test cases are raised as false positives).
If the way certain keys are stored changes, and we don't deliberately decide to stop supporting old keys (which should only be done by retiring a version of the storage format), then we should keep the corresponding test cases in load-only mode: create a file with the expected content, load it and check the data that it contains.
## Storage architecture overview
The PSA subsystem provides storage on top of the PSA trusted storage interface. The state of the storage is a mapping from file identifier (a 64-bit number) to file content (a byte array). These files include:
* [Key files](#key-storage) (files containing one key's metadata and, except for some secure element keys, key material).
* The [random generator injected seed or state file](#random-generator-state) (`PSA_CRYPTO_ITS_RANDOM_SEED_UID`).
* [Storage transaction file](#storage-transaction-resumption).
* [Driver state files](#driver-state-files).
For a more detailed description, refer to the [Mbed TLS storage specification](../mbed-crypto-storage-specification.md).
In addition, Mbed TLS includes an implementation of the PSA trusted storage interface on top of C stdio. This document addresses the test strategy for [PSA ITS over file](#psa-its-over-file) in a separate section below.
## Key storage testing
This section describes the desired test cases for keys created with the current storage format version. When the storage format changes, if backward compatibility is desired, old test data should be kept as described under [“Keeping up with storage format evolution”](#keeping-up-with-storage-format-evolution).
### Keystore layout
Objective: test that the key file name corresponds to the key identifier.
Method: Create a key with a given identifier (using `psa_import_key`) and verify that a file with the expected name is created, and no other. Repeat for different identifiers.
### General key format
Objective: test the format of the key file: which field goes where and how big it is.
Method: Create a key with certain metadata with `psa_import_key`. Read the file content and validate that it has the expected layout, deduced from the storage specification. Repeat with different metadata. Ensure that there are test cases covering all fields.
### Enumeration of test cases for keys
Objective: ensure that the coverage is sufficient to have assurance that all keys are stored correctly. This requires a sufficient selection of key types, sizes, policies, etc.
In particular, the tests must validate that each `PSA_xxx` constant that is stored in a key is covered by at least one test case:
* Lifetimes: `PSA_KEY_LIFETIME_xxx`, `PSA_KEY_PERSISTENCE_xxx`, `PSA_KEY_LOCATION_xxx`.
* Usage flags: `PSA_KEY_USAGE_xxx`.
* Algorithms in policies: `PSA_ALG_xxx`.
* Key types: `PSA_KEY_TYPE_xxx`, `PSA_ECC_FAMILY_xxx`, `PSA_DH_FAMILY_xxx`.
In addition, the coverage of key material must ensure that any variation in key representation is detected. See [“Considerations on key material representations”](#Considerations-on-key-material-representations) for considerations regarding key types.
Method: Each test case creates a key with `psa_import_key`, purges it from memory, then reads it back and exercises it.
Generate test cases automatically based on an enumeration of available constants and some knowledge of what attributes (sizes, algorithms, …) and content to use for keys of a certain type.
### Testing with alternative lifetime values
Objective: have test coverage for lifetimes other than the default persistent lifetime (`PSA_KEY_LIFETIME_PERSISTENT`).
Method:
* For alternative locations: have tests conditional on the presence of a driver for that location.
* For alternative persistence levels: have load-and-check tests for supported persistence levels. We may also want to have negative tests ensuring that keys with a not-supported persistence level are not accidentally created.
### Considerations on key material representations
The risks of incompatibilities in key representations depends on the key type and on the presence of drivers. Compatibility of and with drivers is currently out of scope of this document.
Some types only have one plausible representation. Others admit alternative plausible representations (different encodings, or non-canonical representations).
Here are some areas to watch for, with an identified risk of incompatibilities.
* HMAC keys longer than the block size: pre-hashed or not?
* DES keys: was parity enforced?
* RSA keys: can invalid DER encodings (e.g. leading zeros, ignored sign bit) have been stored?
* RSA private keys: can invalid CRT parameters have been stored?
* Montgomery private keys: were they stored in masked form?
## Random generator state
TODO
## Driver state files
Not yet implemented.
TODO
## Storage transaction resumption
Only relevant for secure element support. Not yet fully implemented.
TODO
## PSA ITS over file
TODO

View File

@@ -0,0 +1,64 @@
# Mbed TLS test framework
This document is an overview of the Mbed TLS test framework and test tools.
This document is incomplete. You can help by expanding it.
## Unit tests
See <https://mbed-tls.readthedocs.io/en/latest/kb/development/test_suites>
### Unit test descriptions
Each test case has a description which succinctly describes for a human audience what the test does. The first non-comment line of each paragraph in a `.data` file is the test description. The following rules and guidelines apply:
* Test descriptions may not contain semicolons, line breaks and other control characters, or non-ASCII characters. <br>
Rationale: keep the tools that process test descriptions (`generate_test_code.py`, [outcome file](#outcome-file) tools) simple.
* Test descriptions must be unique within a `.data` file. If you can't think of a better description, the convention is to append `#1`, `#2`, etc. <br>
Rationale: make it easy to relate a failure log to the test data. Avoid confusion between cases in the [outcome file](#outcome-file).
* Test descriptions should be a maximum of **66 characters**. <br>
Rationale: 66 characters is what our various tools assume (leaving room for 14 more characters on an 80-column line). Longer descriptions may be truncated or may break a visual alignment. <br>
We have a lot of test cases with longer descriptions, but they should be avoided. At least please make sure that the first 66 characters describe the test uniquely.
* Make the description descriptive. “foo: x=2, y=4” is more descriptive than “foo #2”. “foo: 0<x<y, both even” is even better if these inequalities and parities are why this particular test data was chosen.
* Avoid changing the description of an existing test case without a good reason. This breaks the tracking of failures across CI runs, since this tracking is based on the descriptions.
`tests/scripts/check_test_cases.py` enforces some rules and warns if some guidelines are violated.
## TLS tests
### SSL extension tests
#### SSL test case descriptions
Each test case in `ssl-opt.sh` has a description which succinctly describes for a human audience what the test does. The test description is the first parameter to `run_test`.
The same rules and guidelines apply as for [unit test descriptions](#unit-test-descriptions). In addition, the description must be written on the same line as `run_test`, in double quotes, for the sake of `check_test_cases.py`.
### SSL cipher suite tests
Each test case in `compat.sh` has a description which succinctly describes for a human audience what the test does. The test description is `$TITLE` defined in `run_client`.
The same rules and guidelines apply as for [unit test descriptions](#unit-test-descriptions). In addition, failure cause in `compat.sh` is not classified as `ssl-opt.sh`, so the information of failed log files are followed as prompt.
## Running tests
### Outcome file
#### Generating an outcome file
Unit tests, `ssl-opt.sh` and `compat.sh` record the outcome of each test case in a **test outcome file**. This feature is enabled if the environment variable `MBEDTLS_TEST_OUTCOME_FILE` is set. Set it to the path of the desired file.
If you run `all.sh --outcome-file test-outcome.csv`, this collects the outcome of all the test cases in `test-outcome.csv`.
#### Outcome file format
The outcome file is in a CSV format using `;` (semicolon) as the delimiter and no quoting. This means that fields may not contain newlines or semicolons. There is no title line.
The outcome file has 6 fields:
* **Platform**: a description of the platform, e.g. `Linux-x86_64` or `Linux-x86_64-gcc7-msan`.
* **Configuration**: a unique description of the configuration (`mbedtls_config.h`).
* **Test suite**: `test_suite_xxx`, `ssl-opt` or `compat`.
* **Test case**: the description of the test case.
* **Result**: one of `PASS`, `SKIP` or `FAIL`.
* **Cause**: more information explaining the result.

View File

@@ -0,0 +1,646 @@
TLS 1.3 support
===============
Overview
--------
Mbed TLS provides a partial implementation of the TLS 1.3 protocol defined in
the "Support description" section below. The TLS 1.3 support enablement
is controlled by the MBEDTLS_SSL_PROTO_TLS1_3 configuration option.
The development of the TLS 1.3 protocol is based on the TLS 1.3 prototype
located at https://github.com/hannestschofenig/mbedtls. The prototype is
itself based on a version of the development branch that we aim to keep as
recent as possible (ideally the head) by merging regularly commits of the
development branch into the prototype. The section "Prototype upstreaming
status" below describes what remains to be upstreamed.
Support description
-------------------
- Overview
- Mbed TLS implements both the client and the server side of the TLS 1.3
protocol.
- Mbed TLS supports ECDHE key establishment.
- Mbed TLS does not support DHE key establishment.
- Mbed TLS supports pre-shared keys for key establishment, pre-shared keys
provisioned externally as well as provisioned via the ticket mechanism.
- Mbed TLS supports session resumption via the ticket mechanism.
- Mbed TLS does not support sending or receiving early data (0-RTT data).
- Supported cipher suites: depends on the library configuration. Potentially
all of them:
TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384, TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_128_CCM_SHA256 and TLS_AES_128_CCM_8_SHA256.
- Supported ClientHello extensions:
| Extension | Support |
| ---------------------------- | ------- |
| server_name | YES |
| max_fragment_length | no |
| status_request | no |
| supported_groups | YES |
| signature_algorithms | YES |
| use_srtp | no |
| heartbeat | no |
| apln | YES |
| signed_certificate_timestamp | no |
| client_certificate_type | no |
| server_certificate_type | no |
| padding | no |
| key_share | YES |
| pre_shared_key | YES |
| psk_key_exchange_modes | YES |
| early_data | no |
| cookie | no |
| supported_versions | YES |
| certificate_authorities | no |
| post_handshake_auth | no |
| signature_algorithms_cert | no |
- Supported groups: depends on the library configuration.
Potentially all ECDHE groups:
secp256r1, x25519, secp384r1, x448 and secp521r1.
Finite field groups (DHE) are not supported.
- Supported signature algorithms (both for certificates and CertificateVerify):
depends on the library configuration.
Potentially:
ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384, ecdsa_secp521r1_sha512,
rsa_pkcs1_sha256, rsa_pkcs1_sha384, rsa_pkcs1_sha512, rsa_pss_rsae_sha256,
rsa_pss_rsae_sha384 and rsa_pss_rsae_sha512.
Note that in absence of an application profile standard specifying otherwise
rsa_pkcs1_sha256, rsa_pss_rsae_sha256 and ecdsa_secp256r1_sha256 are
mandatory (see section 9.1 of the specification).
- Supported versions:
- TLS 1.2 and TLS 1.3 with version negotiation on client and server side.
- TLS 1.2 and TLS 1.3 can be enabled in the build independently of each
other.
- Compatibility with existing SSL/TLS build options:
The TLS 1.3 implementation is compatible with nearly all TLS 1.2
configuration options in the sense that when enabling TLS 1.3 in the library
there is rarely any need to modify the configuration from that used for
TLS 1.2. There are two exceptions though: the TLS 1.3 implementation requires
MBEDTLS_PSA_CRYPTO_C and MBEDTLS_SSL_KEEP_PEER_CERTIFICATE, so these options
must be enabled.
Most of the Mbed TLS SSL/TLS related options are not supported or not
applicable to the TLS 1.3 implementation:
| Mbed TLS configuration option | Support |
| ---------------------------------------- | ------- |
| MBEDTLS_SSL_ALL_ALERT_MESSAGES | no |
| MBEDTLS_SSL_ASYNC_PRIVATE | no |
| MBEDTLS_SSL_CONTEXT_SERIALIZATION | no |
| MBEDTLS_SSL_DEBUG_ALL | no |
| MBEDTLS_SSL_ENCRYPT_THEN_MAC | n/a |
| MBEDTLS_SSL_EXTENDED_MASTER_SECRET | n/a |
| MBEDTLS_SSL_KEEP_PEER_CERTIFICATE | no (1) |
| MBEDTLS_SSL_RENEGOTIATION | n/a |
| MBEDTLS_SSL_MAX_FRAGMENT_LENGTH | no |
| | |
| MBEDTLS_SSL_SESSION_TICKETS | yes |
| MBEDTLS_SSL_SERVER_NAME_INDICATION | yes |
| MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH | no |
| | |
| MBEDTLS_ECP_RESTARTABLE | no |
| MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED | no |
| | |
| MBEDTLS_KEY_EXCHANGE_PSK_ENABLED | n/a (2) |
| MBEDTLS_KEY_EXCHANGE_DHE_PSK_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDHE_PSK_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_RSA_PSK_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_DHE_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDHE_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDH_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECJPAKE_ENABLED | n/a |
| | |
| MBEDTLS_PSA_CRYPTO_C | no (1) |
| MBEDTLS_USE_PSA_CRYPTO | yes |
(1) These options must remain in their default state of enabled.
(2) See the TLS 1.3 specific build options section below.
- TLS 1.3 specific build options:
- MBEDTLS_SSL_TLS1_3_COMPATIBILITY_MODE enables the support for middlebox
compatibility mode as defined in section D.4 of RFC 8446.
- MBEDTLS_SSL_TLS1_3_KEY_EXCHANGE_MODE_PSK_ENABLED enables the support for
the PSK key exchange mode as defined by RFC 8446. If it is the only key
exchange mode enabled, the TLS 1.3 implementation does not contain any code
related to key exchange protocols, certificates and signatures.
- MBEDTLS_SSL_TLS1_3_KEY_EXCHANGE_MODE_EPHEMERAL_ENABLED enables the
support for the ephemeral key exchange mode. If it is the only key exchange
mode enabled, the TLS 1.3 implementation does not contain any code related
to PSK based key exchange. The ephemeral key exchange mode requires at least
one of the key exchange protocol allowed by the TLS 1.3 specification, the
parsing and validation of x509 certificates and at least one signature
algorithm allowed by the TLS 1.3 specification for signature computing and
verification.
- MBEDTLS_SSL_TLS1_3_KEY_EXCHANGE_MODE_PSK_EPHEMERAL_ENABLED enables the
support for the PSK ephemeral key exchange mode. If it is the only key
exchange mode enabled, the TLS 1.3 implementation does not contain any code
related to certificates and signatures. The PSK ephemeral key exchange
mode requires at least one of the key exchange protocol allowed by the
TLS 1.3 specification.
Prototype upstreaming status
----------------------------
The following parts of the TLS 1.3 prototype remain to be upstreamed:
- Sending (client) and receiving (server) early data (0-RTT data).
- New TLS Message Processing Stack (MPS)
The TLS 1.3 prototype is developed alongside a rewrite of the TLS messaging layer,
encompassing low-level details such as record parsing, handshake reassembly, and
DTLS retransmission state machine.
MPS has the following components:
- Layer 1 (Datagram handling)
- Layer 2 (Record handling)
- Layer 3 (Message handling)
- Layer 4 (Retransmission State Machine)
- Reader (Abstracted pointer arithmetic and reassembly logic for incoming data)
- Writer (Abstracted pointer arithmetic and fragmentation logic for outgoing data)
Of those components, the following have been upstreamed
as part of `MBEDTLS_SSL_PROTO_TLS1_3`:
- Reader ([`library/mps_reader.h`](../../library/mps_reader.h))
Coding rules checklist for TLS 1.3
----------------------------------
The following coding rules are aimed to be a checklist for TLS 1.3 upstreaming
work to reduce review rounds and the number of comments in each round. They
come along (do NOT replace) the project coding rules
(https://mbed-tls.readthedocs.io/en/latest/kb/development/mbedtls-coding-standards). They have been
established and discussed following the review of #4882 that was the
PR upstreaming the first part of TLS 1.3 ClientHello writing code.
TLS 1.3 specific coding rules:
- TLS 1.3 specific C modules, headers, static functions names are prefixed
with `ssl_tls13_`. The same applies to structures and types that are
internal to C modules.
- TLS 1.3 specific exported functions, structures and types are
prefixed with `mbedtls_ssl_tls13_`.
- Use TLS1_3 in TLS 1.3 specific macros.
- The names of macros and variables related to a field or structure in the
TLS 1.3 specification should contain as far as possible the field name as
it is in the specification. If the field name is "too long" and we prefer
to introduce some kind of abbreviation of it, use the same abbreviation
everywhere in the code.
Example 1: #define CLIENT_HELLO_RANDOM_LEN 32, macro for the length of the
`random` field of the ClientHello message.
Example 2 (consistent abbreviation): `mbedtls_ssl_tls13_write_sig_alg_ext()`
and `MBEDTLS_TLS_EXT_SIG_ALG`, `sig_alg` standing for
`signature_algorithms`.
- Regarding vectors that are represented by a length followed by their value
in the data exchanged between servers and clients:
- Use `<vector name>_len` for the name of a variable used to compute the
length in bytes of the vector, where <vector name> is the name of the
vector as defined in the TLS 1.3 specification.
- Use `p_<vector_name>_len` for the name of a variable intended to hold
the address of the first byte of the vector length.
- Use `<vector_name>` for the name of a variable intended to hold the
address of the first byte of the vector value.
- Use `<vector_name>_end` for the name of a variable intended to hold
the address of the first byte past the vector value.
Those idioms should lower the risk of mis-using one of the address in place
of another one which could potentially lead to some nasty issues.
Example: `cipher_suites` vector of ClientHello in
`ssl_tls13_write_client_hello_cipher_suites()`
```
size_t cipher_suites_len;
unsigned char *p_cipher_suites_len;
unsigned char *cipher_suites;
```
- Where applicable, use:
- the macros to extract a byte from a multi-byte integer MBEDTLS_BYTE_{0-8}.
- the macros to write in memory in big-endian order a multi-byte integer
MBEDTLS_PUT_UINT{8|16|32|64}_BE.
- the macros to read from memory a multi-byte integer in big-endian order
MBEDTLS_GET_UINT{8|16|32|64}_BE.
- the macro to check for space when writing into an output buffer
`MBEDTLS_SSL_CHK_BUF_PTR`.
- the macro to check for data when reading from an input buffer
`MBEDTLS_SSL_CHK_BUF_READ_PTR`.
These macros were introduced after the prototype was written thus are
likely not to be used in prototype where we now would use them in
development.
The three first types, MBEDTLS_BYTE_{0-8}, MBEDTLS_PUT_UINT{8|16|32|64}_BE
and MBEDTLS_GET_UINT{8|16|32|64}_BE improve the readability of the code and
reduce the risk of writing or reading bytes in the wrong order.
The two last types, `MBEDTLS_SSL_CHK_BUF_PTR` and
`MBEDTLS_SSL_CHK_BUF_READ_PTR`, improve the readability of the code and
reduce the risk of error in the non-completely-trivial arithmetic to
check that we do not write or read past the end of a data buffer. The
usage of those macros combined with the following rule mitigate the risk
to read/write past the end of a data buffer.
Examples:
```
hs_hdr[1] = MBEDTLS_BYTE_2( total_hs_len );
MBEDTLS_PUT_UINT16_BE( MBEDTLS_TLS_EXT_SUPPORTED_VERSIONS, p, 0 );
MBEDTLS_SSL_CHK_BUF_PTR( p, end, 7 );
```
- To mitigate what happened here
(https://github.com/Mbed-TLS/mbedtls/pull/4882#discussion_r701704527) from
happening again, use always a local variable named `p` for the reading
pointer in functions parsing TLS 1.3 data, and for the writing pointer in
functions writing data into an output buffer and only that variable. The
name `p` has been chosen as it was already widely used in TLS code.
- When an TLS 1.3 structure is written or read by a function or as part of
a function, provide as documentation the definition of the structure as
it is in the TLS 1.3 specification.
General coding rules:
- We prefer grouping "related statement lines" by not adding blank lines
between them.
Example 1:
```
ret = ssl_tls13_write_client_hello_cipher_suites( ssl, buf, end, &output_len );
if( ret != 0 )
return( ret );
buf += output_len;
```
Example 2:
```
MBEDTLS_SSL_CHK_BUF_PTR( cipher_suites_iter, end, 2 );
MBEDTLS_PUT_UINT16_BE( cipher_suite, cipher_suites_iter, 0 );
cipher_suites_iter += 2;
```
- Use macros for constants that are used in different functions, different
places in the code. When a constant is used only locally in a function
(like the length in bytes of the vector lengths in functions reading and
writing TLS handshake message) there is no need to define a macro for it.
Example: `#define CLIENT_HELLO_RANDOM_LEN 32`
- When declaring a pointer the dereferencing operator should be prepended to
the pointer name not appended to the pointer type:
Example: `mbedtls_ssl_context *ssl;`
- Maximum line length is 80 characters.
Exceptions:
- string literals can extend beyond 80 characters as we do not want to
split them to ease their search in the code base.
- A line can be more than 80 characters by a few characters if just looking
at the 80 first characters is enough to fully understand the line. For
example it is generally fine if some closure characters like ";" or ")"
are beyond the 80 characters limit.
If a line becomes too long due to a refactoring (for example renaming a
function to a longer name, or indenting a block more), avoid rewrapping
lines in the same commit: it makes the review harder. Make one commit with
the longer lines and another commit with just the rewrapping.
- When in successive lines, functions and macros parameters should be aligned
vertically.
Example:
```
int mbedtls_ssl_start_handshake_msg( mbedtls_ssl_context *ssl,
unsigned hs_type,
unsigned char **buf,
size_t *buf_len );
```
- When a function's parameters span several lines, group related parameters
together if possible.
For example, prefer:
```
mbedtls_ssl_start_handshake_msg( ssl, hs_type,
buf, buf_len );
```
over
```
mbedtls_ssl_start_handshake_msg( ssl, hs_type, buf,
buf_len );
```
even if it fits.
Overview of handshake code organization
---------------------------------------
The TLS 1.3 handshake protocol is implemented as a state machine. The
functions `mbedtls_ssl_tls13_handshake_{client,server}_step` are the top level
functions of that implementation. They are implemented as a switch over all the
possible states of the state machine.
Most of the states are either dedicated to the processing or writing of an
handshake message.
The implementation does not go systematically through all states as this would
result in too many checks of whether something needs to be done or not in a
given state to be duplicated across several state handlers. For example, on
client side, the states related to certificate parsing and validation are
bypassed if the handshake is based on a pre-shared key and thus does not
involve certificates.
On the contrary, the implementation goes systematically though some states
even if they could be bypassed if it helps in minimizing when and where inbound
and outbound keys are updated. The `MBEDTLS_SSL_CLIENT_CERTIFICATE` state on
client side is a example of that.
The names of the handlers processing/writing an handshake message are
prefixed with `(mbedtls_)ssl_tls13_{process,write}`. To ease the maintenance and
reduce the risk of bugs, the code of the message processing and writing
handlers is split into a sequence of stages.
The sending of data to the peer only occurs in `mbedtls_ssl_handshake_step`
between the calls to the handlers and as a consequence handlers do not have to
care about the MBEDTLS_ERR_SSL_WANT_WRITE error code. Furthermore, all pending
data are flushed before to call the next handler. That way, handlers do not
have to worry about pending data when changing outbound keys.
### Message processing handlers
For message processing handlers, the stages are:
* coordination stage: check if the state should be bypassed. This stage is
optional. The check is either purely based on the reading of the value of some
fields of the SSL context or based on the reading of the type of the next
message. The latter occurs when it is not known what the next handshake message
will be, an example of that on client side being if we are going to receive a
CertificateRequest message or not. The intent is, apart from the next record
reading to not modify the SSL context as this stage may be repeated if the
next handshake message has not been received yet.
* fetching stage: at this stage we are sure of the type of the handshake
message we must receive next and we try to fetch it. If we did not go through
a coordination stage involving the next record type reading, the next
handshake message may not have been received yet, the handler returns with
`MBEDTLS_ERR_SSL_WANT_READ` without changing the current state and it will be
called again later.
* pre-processing stage: prepare the SSL context for the message parsing. This
stage is optional. Any processing that must be done before the parsing of the
message or that can be done to simplify the parsing code. Some simple and
partial parsing of the handshake message may append at that stage like in the
ServerHello message pre-processing.
* parsing stage: parse the message and restrict as much as possible any
update of the SSL context. The idea of the pre-processing/parsing/post-processing
organization is to concentrate solely on the parsing in the parsing function to
reduce the size of its code and to simplify it.
* post-processing stage: following the parsing, further update of the SSL
context to prepare for the next incoming and outgoing messages. This stage is
optional. For example, secret and key computations occur at this stage, as well
as handshake messages checksum update.
* state change: the state change is done in the main state handler to ease the
navigation of the state machine transitions.
### Message writing handlers
For message writing handlers, the stages are:
* coordination stage: check if the state should be bypassed. This stage is
optional. The check is based on the value of some fields of the SSL context.
* preparation stage: prepare for the message writing. This stage is optional.
Any processing that must be done before the writing of the message or that can
be done to simplify the writing code.
* writing stage: write the message and restrict as much as possible any update
of the SSL context. The idea of the preparation/writing/finalization
organization is to concentrate solely on the writing in the writing function to
reduce the size of its code and simplify it.
* finalization stage: following the writing, further update of the SSL
context to prepare for the next incoming and outgoing messages. This stage is
optional. For example, handshake secret and key computation occur at that
stage (ServerHello writing finalization), switching to handshake keys for
outbound message on server side as well.
* state change: the state change is done in the main state handler to ease
the navigation of the state machine transitions.
Writing and reading early or 0-RTT data
---------------------------------------
An application function to write and send a buffer of data to a server through
TLS may plausibly look like:
```
int write_data( mbedtls_ssl_context *ssl,
const unsigned char *data_to_write,
size_t data_to_write_len,
size_t *data_written )
{
*data_written = 0;
while( *data_written < data_to_write_len )
{
ret = mbedtls_ssl_write( ssl, data_to_write + *data_written,
data_to_write_len - *data_written );
if( ret < 0 &&
ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE )
{
return( ret );
}
*data_written += ret;
}
return( 0 );
}
```
where ssl is the SSL context to use, data_to_write the address of the data
buffer and data_to_write_len the number of data bytes. The handshake may
not be completed, not even started for the SSL context ssl when the function is
called and in that case the mbedtls_ssl_write() API takes care transparently of
completing the handshake before to write and send data to the server. The
mbedtls_ssl_write() may not been able to write and send all data in one go thus
the need for a loop calling it as long as there are still data to write and
send.
An application function to write and send early data and only early data,
data sent during the first flight of client messages while the handshake is in
its initial phase, would look completely similar but the call to
mbedtls_ssl_write_early_data() instead of mbedtls_ssl_write().
```
int write_early_data( mbedtls_ssl_context *ssl,
const unsigned char *data_to_write,
size_t data_to_write_len,
size_t *data_written )
{
*data_written = 0;
while( *data_written < data_to_write_len )
{
ret = mbedtls_ssl_write_early_data( ssl, data_to_write + *data_written,
data_to_write_len - *data_written );
if( ret < 0 &&
ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE )
{
return( ret );
}
*data_written += ret;
}
return( 0 );
}
```
Note that compared to write_data(), write_early_data() can also return
MBEDTLS_ERR_SSL_CANNOT_WRITE_EARLY_DATA and that should be handled
specifically by the user of write_early_data(). A fresh SSL context (typically
just after a call to mbedtls_ssl_setup() or mbedtls_ssl_session_reset()) would
be expected when calling `write_early_data`.
All together, code to write and send a buffer of data as long as possible as
early data and then as standard post-handshake application data could
plausibly look like:
```
ret = write_early_data( ssl, data_to_write, data_to_write_len,
&early_data_written );
if( ret < 0 &&
ret != MBEDTLS_ERR_SSL_CANNOT_WRITE_EARLY_DATA )
{
goto error;
}
ret = write_data( ssl, data_to_write + early_data_written,
data_to_write_len - early_data_written, &data_written );
if( ret < 0 )
goto error;
data_written += early_data_written;
```
Finally, taking into account that the server may reject early data, application
code to write and send a buffer of data could plausibly look like:
```
ret = write_early_data( ssl, data_to_write, data_to_write_len,
&early_data_written );
if( ret < 0 &&
ret != MBEDTLS_ERR_SSL_CANNOT_WRITE_EARLY_DATA )
{
goto error;
}
/*
* Make sure the handshake is completed as it is a requisite to
* mbedtls_ssl_get_early_data_status().
*/
while( !mbedtls_ssl_is_handshake_over( ssl ) )
{
ret = mbedtls_ssl_handshake( ssl );
if( ret < 0 &&
ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE )
{
goto error;
}
}
ret = mbedtls_ssl_get_early_data_status( ssl );
if( ret < 0 )
goto error;
if( ret == MBEDTLS_SSL_EARLY_DATA_STATUS_REJECTED )
early_data_written = 0;
ret = write_data( ssl, data_to_write + early_data_written,
data_to_write_len - early_data_written, &data_written );
if( ret < 0 )
goto error;
data_written += early_data_written;
```
Basically, the same holds for reading early data on the server side without the
complication of possible rejection. An application function to read early data
into a given buffer could plausibly look like:
```
int read_early_data( mbedtls_ssl_context *ssl,
unsigned char *buffer,
size_t buffer_size,
size_t *data_len )
{
*data_len = 0;
while( *data_len < buffer_size )
{
ret = mbedtls_ssl_read_early_data( ssl, buffer + *data_len,
buffer_size - *data_len );
if( ret < 0 &&
ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE )
{
return( ret );
}
*data_len += ret;
}
return( 0 );
}
```
with again calls to read_early_data() expected to be done with a fresh SSL
context.

34
externals/mbedtls/docs/conf.py vendored Normal file
View File

@@ -0,0 +1,34 @@
# Configuration file for the Sphinx documentation builder.
#
# For the full list of built-in configuration values, see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Project information -----------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
import glob
project = 'Mbed TLS Versioned'
copyright = '2023, Mbed TLS Contributors'
author = 'Mbed TLS Contributors'
# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
extensions = ['breathe', 'sphinx.ext.graphviz']
templates_path = ['_templates']
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
breathe_projects = {
'mbedtls-versioned': '../apidoc/xml'
}
breathe_default_project = 'mbedtls-versioned'
primary_domain = 'c'
highlight_language = 'c'
# -- Options for HTML output -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = 'sphinx_rtd_theme'
html_static_path = ['_static']

View File

@@ -0,0 +1,460 @@
This document explains how to create builds of Mbed TLS where some
cryptographic mechanisms are provided only by PSA drivers (that is, no
built-in implementation of those algorithms), from a user's perspective.
This is useful to save code size for people who are using either a hardware
accelerator, or an alternative software implementation that is more
aggressively optimized for code size than the default one in Mbed TLS.
General considerations
----------------------
This document assumes that you already have a working driver.
Otherwise, please see the [PSA driver example and
guide](psa-driver-example-and-guide.md) for information on writing a
driver.
In order to have some mechanism provided only by a driver, you'll want
the following compile-time configuration options enabled:
- `MBEDTLS_PSA_CRYPTO_C` (enabled by default) - this enables PSA Crypto.
- `MBEDTLS_USE_PSA_CRYPTO` (disabled by default) - this makes PK, X.509 and
TLS use PSA Crypto. You need to enable this if you're using PK, X.509 or TLS
and want them to have access to the algorithms provided by your driver. (See
[the dedicated document](use-psa-crypto.md) for details.)
- `MBEDTLS_PSA_CRYPTO_CONFIG` (disabled by default) - this enables
configuration of cryptographic algorithms using `PSA_WANT` macros in
`include/psa/crypto_config.h`. See [Conditional inclusion of cryptographic
mechanism through the PSA API in Mbed
TLS](proposed/psa-conditional-inclusion-c.md) for details.
In addition, for each mechanism you want provided only by your driver:
- Define the corresponding `PSA_WANT` macro in `psa/crypto_config.h` - this
means the algorithm will be available in the PSA Crypto API.
- Define the corresponding `MBEDTLS_PSA_ACCEL` in your build. This could be
defined in `psa/crypto_config.h` or your compiler's command line. This
informs the PSA code that an accelerator is available for this mechanism.
- Undefine / comment out the corresponding `MBEDTLS_xxx_C` macro in
`mbedtls/mbedtls_config.h`. This ensures the built-in implementation is not
included in the build.
For example, if you want SHA-256 to be provided only by a driver, you'll want
`PSA_WANT_ALG_SHA_256` and `MBEDTLS_PSA_ACCEL_SHA_256` defined, and
`MBEDTLS_SHA256_C` undefined.
In addition to these compile-time considerations, at runtime you'll need to
make sure you call `psa_crypto_init()` before any function that uses the
driver-only mechanisms. Note that this is already a requirement for any use of
the PSA Crypto API, as well as for use of the PK, X.509 and TLS modules when
`MBEDTLS_USE_PSA_CRYPTO` is enabled, so in most cases your application will
already be doing this.
Mechanisms covered
------------------
For now, only the following (families of) mechanisms are supported:
- hashes: SHA-3, SHA-2, SHA-1, MD5, etc.
- elliptic-curve cryptography (ECC): ECDH, ECDSA, EC J-PAKE, ECC key types.
- finite-field Diffie-Hellman: FFDH algorithm, DH key types.
- RSA: PKCS#1 v1.5 and v2.1 signature and encryption algorithms, RSA key types
(for now, only crypto, no X.509 or TLS support).
- AEADs:
- GCM and CCM with AES, ARIA and Camellia key types
- ChachaPoly with ChaCha20 Key type
- Unauthenticated ciphers:
- key types: AES, ARIA, Camellia, DES
- modes: ECB, CBC, CTR, CFB, OFB, XTS
For each family listed above, all the mentioned alorithms/key types are also
all the mechanisms that exist in PSA API.
Supported means that when those are provided only by drivers, everything
(including PK, X.509 and TLS if `MBEDTLS_USE_PSA_CRYPTO` is enabled) should
work in the same way as if the mechanisms where built-in, except as documented
in the "Limitations" sub-sections of the sections dedicated to each family
below.
Hashes
------
It is possible to have all hash operations provided only by a driver.
More precisely:
- you can enable `PSA_WANT_ALG_SHA_256` without `MBEDTLS_SHA256_C`, provided
you have `MBEDTLS_PSA_ACCEL_ALG_SHA_256` enabled;
- and similarly for all supported hash algorithms: `MD5`, `RIPEMD160`,
`SHA_1`, `SHA_224`, `SHA_256`, `SHA_384`, `SHA_512`, `SHA3_224`, `SHA3_256`,
`SHA3_384`, `SHA3_512`.
In such a build, all crypto operations (via the PSA Crypto API, or non-PSA
APIs), as well as X.509 and TLS, will work as usual, except that direct calls
to low-level hash APIs (`mbedtls_sha256()` etc.) are not possible for the
modules that are disabled.
You need to call `psa_crypto_init()` before any crypto operation that uses
a hash algorithm that is provided only by a driver, as mentioned in [General
considerations](#general-considerations) above.
If you want to check at compile-time whether a certain hash algorithm is
available in the present build of Mbed TLS, regardless of whether it's
provided by a driver or built-in, you should use the following macros:
- for code that uses only the PSA Crypto API: `PSA_WANT_ALG_xxx` from
`psa/crypto.h`;
- for code that uses non-PSA crypto APIs: `MBEDTLS_MD_CAN_xxx` from
`mbedtls/config_adjust_legacy_crypto.h`.
### HMAC
In addition to accelerated hash operations, it is also possible to accelerate
HMAC by enabling and accelerating:
- HMAC algorithm and key type, i.e. `[PSA_WANT|MBEDTLS_PSA_ACCEL]_ALG_HMAC` and
`[PSA_WANT|MBEDTLS_PSA_ACCEL]KEY_TYPE_HMAC`.
- Required hash algorithm(s) as explained in [Hashes](#hashes) section.
In such a build it is possible to disable legacy HMAC support by disabling
`MBEDTLS_MD_C` and still getting crypto operations, X.509 and TLS to work as
usual. Exceptions are:
- As mentioned in [Hashes](#hashes) direct calls to legacy lo-level hash APIs
(`mbedtls_sha256()` etc.) will not be possible for the legacy modules that
are disabled.
- Legacy HMAC support (`mbedtls_md_hmac_xxx()`) won't be possible.
- `MBEDTLS_PKCS[5|7]_C`, `MBEDTLS_HMAC_DRBG_C` and `MBEDTLS_HKDF_C` since they
depend on the legacy implementation of HMAC.
- disabling HMAC_DRBG_C cause deterministic ECDSA (i.e.
`MBEDTLS_DETERMINISTIC_ECDSA` on the legacy side and
`PSA_WANT_ALG_DETERMINISTIC_ECDSA` on the PSA one) to be not available.
Elliptic-curve cryptography (ECC)
---------------------------------
It is possible to have most ECC operations provided only by a driver:
- the ECDH, ECDSA and EC J-PAKE algorithms;
- key import, export, and random generation.
More precisely, if:
- you have driver support for ECC public and using private keys (that is,
`MBEDTLS_PSA_ACCEL_KEY_TYPE_ECC_PUBLIC_KEY` and
`MBEDTLS_PSA_ACCEL_KEY_TYPE_ECC_KEY_PAIR_BASIC` are enabled), and
- you have driver support for all ECC curves that are enabled (that is, for
each `PSA_WANT_ECC_xxx` macro enabled, the corresponding
`MBEDTLS_PSA_ACCEL_ECC_xxx` macros is enabled as well);
then you can:
- enable `PSA_WANT_ALG_ECDH` without `MBEDTLS_ECDH_C`, provided
`MBEDTLS_PSA_ACCEL_ALG_ECDH` is enabled
- enable `PSA_WANT_ALG_ECDSA` without `MBEDTLS_ECDSA_C`, provided
`MBEDTLS_PSA_ACCEL_ALG_ECDSA` is enabled;
- enable `PSA_WANT_ALG_JPAKE` without `MBEDTLS_ECJPAKE_C`, provided
`MBEDTLS_PSA_ACCEL_ALG_JPAKE` is enabled.
In addition, if:
- none of `MBEDTLS_ECDH_C`, `MBEDTLS_ECDSA_C`, `MBEDTLS_ECJPAKE_C` are enabled
(see conditions above), and
- you have driver support for all enabled ECC key pair operations - that is,
for each `PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx` macro enabled, the
corresponding `MBEDTLS_PSA_ACCEL_KEY_TYPE_ECC_KEY_PAIR_xxx` macros is also
enabled,
then you can also disable `MBEDTLS_ECP_C`. However, a small subset of it might
still be included in the build, see limitations sub-section below.
In addition, if:
- `MBEDTLS_ECP_C` is fully removed (see limitation sub-section below),
- and support for RSA key types and algorithms is either fully disabled or
fully provided by a driver,
- and support for DH key types and the FFDH algorithm is either disabled or
fully provided by a driver,
then you can also disable `MBEDTLS_BIGNUM_C`.
In such builds, all crypto operations via the PSA Crypto API will work as
usual, as well as the PK, X.509 and TLS modules if `MBEDTLS_USE_PSA_CRYPTO` is
enabled, with the following exceptions:
- direct calls to APIs from the disabled modules are not possible;
- PK, X.509 and TLS will not support restartable ECC operations (see
limitation sub-section below).
If you want to check at compile-time whether a certain curve is available in
the present build of Mbed TLS, regardless of whether ECC is provided by a
driver or built-in, you should use the following macros:
- for code that uses only the PSA Crypto API: `PSA_WANT_ECC_xxx` from
`psa/crypto.h`;
- for code that may also use non-PSA crypto APIs: `MBEDTLS_ECP_HAVE_xxx` from
`mbedtls/build_info.h` where xxx can take the same values as for
`MBEDTLS_ECP_DP_xxx` macros.
Note that for externally-provided drivers, the integrator is responsible for
ensuring the appropriate `MBEDTLS_PSA_ACCEL_xxx` macros are defined. However,
for the p256-m driver that's provided with the library, those macros are
automatically defined when enabling `MBEDTLS_PSA_P256M_DRIVER_ENABLED`.
### Limitations regarding fully removing `ecp.c`
A limited subset of `ecp.c` will still be automatically re-enabled if any of
the following is enabled:
- `MBEDTLS_PK_PARSE_EC_COMPRESSED` - support for parsing ECC keys where the
public part is in compressed format;
- `MBEDTLS_PK_PARSE_EC_EXTENDED` - support for parsing ECC keys where the
curve is identified not by name, but by explicit parameters;
- `PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE` - support for deterministic
derivation of an ECC keypair with `psa_key_derivation_output_key()`.
Note: when any of the above options is enabled, a subset of `ecp.c` will
automatically be included in the build in order to support it. Therefore
you can still disable `MBEDTLS_ECP_C` in `mbedtls_config.h` and this will
result in some code size savings, but not as much as when none of the
above features are enabled.
We do have plans to support each of these with `ecp.c` fully removed in the
future, however there is no established timeline. If you're interested, please
let us know, so we can take it into consideration in our planning.
### Limitations regarding restartable / interruptible ECC operations
At the moment, there is no driver support for interruptible operations
(see `psa_sign_hash_start()` + `psa_sign_hash_complete()` etc.) so as a
consequence these are not supported in builds without `MBEDTLS_ECDSA_C`.
Similarly, there is no PSA support for interruptible ECDH operations so these
are not supported without `ECDH_C`. See also limitations regarding
restartable operations with `MBEDTLS_USE_PSA_CRYPTO` in [its
documentation](use-psa-crypto.md).
Again, we have plans to support this in the future but not with an established
timeline, please let us know if you're interested.
### Limitations regarding "mixed" builds (driver and built-in)
In order for a build to be driver-only (no built-in implementation), all the
requested algorithms, key types (key operations) and curves must be
accelerated (plus a few other restrictions, see "Limitations regarding fully
removing `ecp.c`" above). However, what if you have an accelerator that only
supports some algorithms, some key types (key operations), or some curves, but
want to have more enabled in you build?
It is possible to have acceleration for only a subset of the requested
algorithms. In this case, the built-in implementation of the accelerated
algorithms will be disabled, provided all the requested curves and key types
that can be used with this algorithm are also declared as accelerated.
There is very limited support for having acceleration for only a subset of the
requested key type operations. The only configuration that's tested is that of
a driver accelerating `PUBLIC_KEY`, `KEY_PAIR_BASIC`, `KEY_PAIR_IMPORT`,
`KEY_PAIR_EXPORT` but not `KEY_PAIR_GENERATE`. (Note: currently the driver
interface does not support `KEY_PAIR_DERIVE`.)
There is limited support for having acceleration for only a subset of the
requested curves. In such builds, only the PSA API is currently tested and
working; there are known issues in PK, and X.509 and TLS are untested.
Finite-field Diffie-Hellman
---------------------------
Support is pretty similar to the "Elliptic-curve cryptography (ECC)" section
above.
Key management and usage can be enabled by means of the usual `PSA_WANT` +
`MBEDTLS_PSA_ACCEL` pairs:
- `[PSA_WANT|MBEDTLS_PSA_ACCEL]_KEY_TYPE_DH_PUBLIC_KEY`;
- `[PSA_WANT|MBEDTLS_PSA_ACCEL]_KEY_TYPE_DH_KEY_PAIR_BASIC`;
- `[PSA_WANT|MBEDTLS_PSA_ACCEL]_KEY_TYPE_DH_KEY_PAIR_IMPORT`;
- `[PSA_WANT|MBEDTLS_PSA_ACCEL]_KEY_TYPE_DH_KEY_PAIR_EXPORT`;
- `[PSA_WANT|MBEDTLS_PSA_ACCEL]_KEY_TYPE_DH_KEY_PAIR_GENERATE`;
The same holds for the associated algorithm:
`[PSA_WANT|MBEDTLS_PSA_ACCEL]_ALG_FFDH` allow builds accelerating FFDH and
removing builtin support (i.e. `MBEDTLS_DHM_C`).
RSA
---
It is possible for all RSA operations to be provided only by a driver.
More precisely, if:
- all the RSA algorithms that are enabled (`PSA_WANT_ALG_RSA_*`) are also
accelerated (`MBEDTLS_PSA_ACCEL_ALG_RSA_*`),
- and all the RSA key types that are enabled (`PSA_WANT_KEY_TYPE_RSA_*`) are
also accelerated (`MBEDTLS_PSA_ACCEL_KEY_TYPE_RSA_*`),
then you can disable `MBEDTLS_RSA_C`, `MBEDTLS_PKCS1_V15` and
`MBEDTLS_PKCS1_V21`, and RSA will still work in PSA Crypto.
### Limitations on RSA acceleration
Unlike other mechanisms, for now in configurations with driver-only RSA, only
PSA Crypto works. In particular, PK, X.509 and TLS will _not_ work with
driver-only RSA even if `MBEDTLS_USE_PSA_CRYPTO` is enabled.
Currently (early 2024) we don't have plans to extend this support. If you're
interested in wider driver-only support for RSA, please let us know.
Ciphers (unauthenticated and AEAD)
----------------------------------
It is possible to have all ciphers and AEAD operations provided only by a
driver. More precisely, for each desired combination of key type and
algorithm/mode you can:
- Enable desired PSA key type(s):
- `PSA_WANT_KEY_TYPE_AES`,
- `PSA_WANT_KEY_TYPE_ARIA`,
- `PSA_WANT_KEY_TYPE_CAMELLIA`,
- `PSA_WANT_KEY_TYPE_CHACHA20`,
- `PSA_WANT_KEY_TYPE_DES`.
- Enable desired PSA algorithm(s):
- Unauthenticated ciphers modes:
- `PSA_WANT_ALG_CBC_NO_PADDING`,
- `PSA_WANT_ALG_CBC_PKCS7`,
- `PSA_WANT_ALG_CCM_STAR_NO_TAG`,
- `PSA_WANT_ALG_CFB`,
- `PSA_WANT_ALG_CTR`,
- `PSA_WANT_ALG_ECB_NO_PADDING`,
- `PSA_WANT_ALG_OFB`,
- `PSA_WANT_ALG_STREAM_CIPHER`.
- AEADs:
- `PSA_WANT_ALG_CCM`,
- `PSA_WANT_ALG_GCM`,
- `PSA_WANT_ALG_CHACHA20_POLY1305`.
- Enable `MBEDTLS_PSA_ACCEL_[KEY_TYPE_xxx|ALG_yyy]` symbol(s) which correspond
to the `PSA_WANT_KEY_TYPE_xxx` and `PSA_WANT_ALG_yyy` of the previous steps.
- Disable builtin support of key types:
- `MBEDTLS_AES_C`,
- `MBEDTLS_ARIA_C`,
- `MBEDTLS_CAMELLIA_C`,
- `MBEDTLS_DES_C`,
- `MBEDTLS_CHACHA20_C`.
and algorithms/modes:
- `MBEDTLS_CBC_C`,
- `MBEDTLS_CFB_C`,
- `MBEDTLS_CTR_C`,
- `MBEDTLS_OFB_C`,
- `MBEDTLS_XTS_C`,
- `MBEDTLS_CCM_C`,
- `MBEDTLS_GCM_C`,
- `MBEDTLS_CHACHAPOLY_C`,
- `MBEDTLS_NULL_CIPHER`.
Once a key type and related algorithm are accelerated, all the PSA Crypto APIs
will work, as well as X.509 and TLS (with `MBEDTLS_USE_PSA_CRYPTO` enabled) but
some non-PSA APIs will be absent or have reduced functionality, see
[Restrictions](#restrictions) for details.
### Restrictions
- If an algorithm other than CCM and GCM (see
["Partial acceleration for CCM/GCM"](#partial-acceleration-for-ccmgcm) below)
is enabled but not accelerated, then all key types that can be used with it
will need to be built-in.
- If a key type is enabled but not accelerated, then all algorithms that can be
used with it will need to be built-in.
Some legacy modules can't take advantage of PSA drivers yet, and will either
need to be disabled, or have reduced features when the built-in implementations
of some ciphers are removed:
- `MBEDTLS_NIST_KW_C` needs built-in AES: it must be disabled when
`MBEDTLS_AES_C` is disabled.
- `MBEDTLS_CMAC_C` needs built-in AES/DES: it must be disabled when
`MBEDTLS_AES_C` and `MBEDTLS_DES_C` are both disabled. When only one of them
is enabled, then only the corresponding cipher will be available at runtime
for use with `mbedtls_cipher_cmac_xxx`. (Note: if there is driver support for
CMAC and all compatible key types, then `PSA_WANT_ALG_CMAC` can be enabled
without `MBEDTLS_CMAC_C` and CMAC will be usable with `psa_max_xxx` APIs.)
- `MBEDTLS_CIPHER_C`: the `mbedtls_cipher_xxx()` APIs will only work with
ciphers that are built-in - that is, both the underlying cipher
(eg `MBEDTLS_AES_C`) and the mode (eg `MBEDTLS_CIPHER_MODE_CBC` or
`MBEDTLS_GCM_C`).
- `MBEDTLS_PKCS5_C`: encryption/decryption (PBES2, PBE) will only work with
ciphers that are built-in.
- PEM decryption will only work with ciphers that are built-in.
- PK parse will only be able to parse encrypted keys using built-in ciphers.
Note that if you also disable `MBEDTLS_CIPHER_C`, there will be additional
restrictions, see [Disabling `MBEDTLS_CIPHER_C`](#disabling-mbedtls_cipher_c).
### Legacy <-> PSA matching
Note that the relationship between legacy (i.e. `MBEDTLS_xxx_C`) and PSA
(i.e. `PSA_WANT_xxx`) symbols is not always 1:1. For example:
- ECB mode is always enabled in the legacy configuration for each key type that
allows it (AES, ARIA, Camellia, DES), whereas it must be explicitly enabled
in PSA with `PSA_WANT_ALG_ECB_NO_PADDING`.
- In the legacy API, `MBEDTLS_CHACHA20_C` enables the ChaCha20 stream cipher, and
enabling `MBEDTLS_CHACHAPOLY_C` also enables the ChaCha20-Poly1305 AEAD. In the
PSA API, you need to enable `PSA_KEY_TYPE_CHACHA20` for both, plus
`PSA_ALG_STREAM_CIPHER` or `PSA_ALG_CHACHA20_POLY1305` as desired.
- The legacy symbol `MBEDTLS_CCM_C` adds support for both cipher and AEAD,
whereas in PSA there are 2 different symbols: `PSA_WANT_ALG_CCM_STAR_NO_TAG`
and `PSA_WANT_ALG_CCM`, respectively.
### Partial acceleration for CCM/GCM
[This section depends on #8598 so it might be updated while that PR progresses.]
In case legacy CCM/GCM algorithms are enabled, it is still possible to benefit
from PSA acceleration of the underlying block cipher by enabling support for
ECB mode (`PSA_WANT_ALG_ECB_NO_PADDING` + `MBEDTLS_PSA_ACCEL_ALG_ECB_NO_PADDING`)
together with desired key type(s) (`PSA_WANT_KEY_TYPE_[AES|ARIA|CAMELLIA]` +
`MBEDTLS_PSA_ACCEL_KEY_TYPE_[AES|ARIA|CAMELLIA]`).
In such configurations it is possible to:
- Use CCM and GCM via the PSA Crypto APIs.
- Use CCM and GCM via legacy functions `mbedtls_[ccm|gcm]_xxx()` (but not the
legacy functions `mbedtls_cipher_xxx()`).
- Disable legacy key types (`MBEDTLS_[AES|ARIA|CAMELLIA]_C`) if there is no
other dependency requiring them.
ChaChaPoly has no such feature, so it requires full acceleration (key type +
algorithm) in order to work with a driver.
### CTR-DRBG
The legacy CTR-DRBG module (enabled by `MBEDTLS_CTR_DRBG_C`) can also benefit
from PSA acceleration if both of the following conditions are met:
- The legacy AES module (`MBEDTLS_AES_C`) is not enabled and
- AES is supported on the PSA side together with ECB mode, i.e.
`PSA_WANT_KEY_TYPE_AES` + `PSA_WANT_ALG_ECB_NO_PADDING`.
### Disabling `MBEDTLS_CIPHER_C`
It is possible to save code size by disabling MBEDTLS_CIPHER_C when all of the
following conditions are met:
- The application is not using the `mbedtls_cipher_` API.
- In PSA, all unauthenticated (that is, non-AEAD) ciphers are either disabled or
fully accelerated (that is, all compatible key types are accelerated too).
- Either TLS is disabled, or `MBEDTLS_USE_PSA_CRYPTO` is enabled.
- `MBEDTLS_NIST_KW` is disabled.
- `MBEDTLS_CMAC_C` is disabled. (Note: support for CMAC in PSA can be provided by
a driver.)
In such a build, everything will work as usual except for the following:
- Encryption/decryption functions from the PKCS5 and PKCS12 module will not be
available (only key derivation functions).
- Parsing of PKCS5- or PKCS12-encrypted keys in PK parse will fail.
Note: AEAD ciphers (CCM, GCM, ChachaPoly) do not have a dependency on
MBEDTLS_CIPHER_C even when using the built-in implementations.
If you also have some ciphers fully accelerated and the built-ins removed, see
[Restrictions](#restrictions) for restrictions related to removing the built-ins.

20
externals/mbedtls/docs/index.rst vendored Normal file
View File

@@ -0,0 +1,20 @@
.. Mbed TLS Versioned documentation master file, created by
sphinx-quickstart on Thu Feb 23 18:13:44 2023.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Mbed TLS API documentation
==========================
.. doxygenpage:: index
:project: mbedtls-versioned
.. toctree::
:caption: Contents
:maxdepth: 1
Home <self>
api/grouplist.rst
api/filelist.rst
api/structlist.rst
api/unionlist.rst

View File

@@ -0,0 +1,25 @@
PANDOC = pandoc
default: all
all_markdown = \
psa-conditional-inclusion-c.md \
psa-driver-developer-guide.md \
psa-driver-integration-guide.md \
psa-driver-interface.md \
# This line is intentionally left blank
html: $(all_markdown:.md=.html)
pdf: $(all_markdown:.md=.pdf)
all: html pdf
.SUFFIXES:
.SUFFIXES: .md .html .pdf
.md.html:
$(PANDOC) -o $@ $<
.md.pdf:
$(PANDOC) -o $@ $<
clean:
rm -f *.html *.pdf

View File

@@ -0,0 +1,4 @@
The documents in this directory are proposed specifications for Mbed
TLS features. They are not implemented yet, or only partially
implemented. Please follow activity on the `development` branch of
Mbed TLS if you are interested in these features.

View File

@@ -0,0 +1,253 @@
Conditional inclusion of cryptographic mechanism through the PSA API in Mbed TLS
================================================================================
This document is a proposed interface for deciding at build time which cryptographic mechanisms to include in the PSA Cryptography interface.
This is currently a proposal for Mbed TLS. It is not currently on track for standardization in PSA.
## Introduction
### Purpose of this specification
The [PSA Cryptography API specification](https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface) specifies the interface between a PSA Cryptography implementation and an application. The interface defines a number of categories of cryptographic algorithms (hashes, MAC, signatures, etc.). In each category, a typical implementation offers many algorithms (e.g. for signatures: RSA-PKCS#1v1.5, RSA-PSS, ECDSA). When building the implementation for a specific use case, it is often desirable to include only a subset of the available cryptographic mechanisms, primarily in order to reduce the code footprint of the compiled system.
The present document proposes a way for an application using the PSA cryptography interface to declare which mechanisms it requires.
### Conditional inclusion of legacy cryptography modules
Mbed TLS offers a way to select which cryptographic mechanisms are included in a build through its configuration file (`mbedtls_config.h`). This mechanism is based on two main sets of symbols: `MBEDTLS_xxx_C` controls the availability of the mechanism to the application, and `MBEDTLS_xxx_ALT` controls the availability of an alternative implementation, so the software implementation is only included if `MBEDTLS_xxx_C` is defined but not `MBEDTLS_xxx_ALT`.
### PSA evolution
In the PSA cryptography interface, the **core** (built-in implementations of cryptographic mechanisms) can be augmented with drivers. **Transparent drivers** replace the built-in implementation of a cryptographic mechanism (or, with **fallback**, the built-in implementation is tried if the driver only has partial support for the mechanism). **Opaque drivers** implement cryptographic mechanisms on keys which are stored in a separate domain such as a secure element, for which the core only does key management and dispatch using wrapped key blobs or key identifiers.
The current model is difficult to adapt to the PSA interface for several reasons. The `MBEDTLS_xxx_ALT` symbols are somewhat inconsistent, and in particular do not work well for asymmetric cryptography. For example, many parts of the ECC code have no `MBEDTLS_xxx_ALT` symbol, so a platform with ECC acceleration that can perform all ECDSA and ECDH operations in the accelerator would still embark the `bignum` module and large parts of the `ecp_curves`, `ecp` and `ecdsa` modules. Also the availability of a transparent driver for a mechanism does not translate directly to `MBEDTLS_xxx` symbols.
### Requirements
[Req.interface] The application can declare which cryptographic mechanisms it needs.
[Req.inclusion] If the application does not require a mechanism, a suitably configured Mbed TLS build must not include it. The granularity of mechanisms must work for typical use cases and has [acceptable limitations](#acceptable-limitations).
[Req.drivers] If a PSA driver is available in the build, a suitably configured Mbed TLS build must not include the corresponding software code (unless a software fallback is needed).
[Req.c] The configuration mechanism consists of C preprocessor definitions, and the build does not require tools other than a C compiler. This is necessary to allow building an application and Mbed TLS in development environments that do not allow third-party tools.
[Req.adaptability] The implementation of the mechanism must be adaptable with future evolution of the PSA cryptography specifications and Mbed TLS. Therefore the interface must remain sufficiently simple and abstract.
### Acceptable limitations
[Limitation.matrix] If a mechanism is defined by a combination of algorithms and key types, for example a block cipher mode (CBC, CTR, CFB, …) and a block permutation (AES, CAMELLIA, ARIA, …), there is no requirement to include only specific combinations.
[Limitation.direction] For mechanisms that have multiple directions (for example encrypt/decrypt, sign/verify), there is no requirement to include only one direction.
[Limitation.size] There is no requirement to include only support for certain key sizes.
[Limitation.multipart] Where there are multiple ways to perform an operation, for example single-part and multi-part, there is no mechanism to select only one or a subset of the possible ways.
## Interface
### PSA Crypto configuration file
The PSA Crypto configuration file `psa/crypto_config.h` defines a series of symbols of the form `PSA_WANT_xxx` where `xxx` describes the feature that the symbol enables. The symbols are documented in the section [“PSA Crypto configuration symbols”](#psa-crypto-configuration-symbols) below.
The symbol `MBEDTLS_PSA_CRYPTO_CONFIG` in `mbedtls/mbedtls_config.h` determines whether `psa/crypto_config.h` is used.
* If `MBEDTLS_PSA_CRYPTO_CONFIG` is unset, which is the default at least in Mbed TLS 2.x versions, things are as they are today: the PSA subsystem includes generic code unconditionally, and includes support for specific mechanisms conditionally based on the existing `MBEDTLS_xxx_` symbols.
* If `MBEDTLS_PSA_CRYPTO_CONFIG` is set, the necessary software implementations of cryptographic algorithms are included based on both the content of the PSA Crypto configuration file and the Mbed TLS configuration file. For example, the code in `aes.c` is enabled if either `mbedtls/mbedtls_config.h` contains `MBEDTLS_AES_C` or `psa/crypto_config.h` contains `PSA_WANT_KEY_TYPE_AES`.
### PSA Crypto configuration symbols
#### Configuration symbol syntax
A PSA Crypto configuration symbol is a C preprocessor symbol whose name starts with `PSA_WANT_`.
* If the symbol is not defined, the corresponding feature is not included.
* If the symbol is defined to a preprocessor expression with the value `1`, the corresponding feature is included.
* If the symbol is defined with a different value, the behavior is currently undefined and reserved for future use.
#### Configuration symbol usage
The presence of a symbol `PSA_WANT_xxx` in the Mbed TLS configuration determines whether a feature is available through the PSA API. These symbols should be used in any place that requires conditional compilation based on the availability of a cryptographic mechanism through the PSA API, including:
* In Mbed TLS test code.
* In Mbed TLS library code using `MBEDTLS_USE_PSA_CRYPTO`, for example in TLS to determine which cipher suites to enable.
* In application code that provides additional features based on cryptographic capabilities, for example additional key parsing and formatting functions, or cipher suite availability for network protocols.
#### Configuration symbol semantics
If a feature is not requested for inclusion in the PSA Crypto configuration file, it may still be included in the build, either because the feature has been requested in some other way, or because the library does not support the exclusion of this feature. Mbed TLS should make a best effort to support the exclusion of all features, but in some cases this may be judged too much effort for too little benefit.
#### Configuration symbols for key types
For most constant or constructor macros of the form `PSA_KEY_TYPE_xxx`, the symbol **`PSA_WANT_KEY_TYPE_xxx`** indicates that support for this key type is desired.
As an exception, starting in Mbed TLS 3.5.0, for `KEY_PAIR` types (that is, private keys for asymmetric cryptography), the feature selection is more fine-grained, with an additional suffix:
* `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_BASIC` enables basic support for the key type, and in particular support for operations with a key of that type for enabled algorithms. This is automatically enabled if any of the other `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_yyy` options is enabled.
* `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_IMPORT` enables support for `psa_import_key` to import a key of that type.
* `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_GENERATE` enables support for `psa_generate_key` to randomly generate a key of that type.
* `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_DERIVE` enables support for `psa_key_derivation_output_key` to deterministically derive a key of that type.
* `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_EXPORT` enables support for `psa_export_key` to export a key of that type.
For asymmetric cryptography, `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_BASIC` determines whether private-key operations are desired, and `PSA_WANT_KEY_TYPE_xxx_PUBLIC_KEY` determines whether public-key operations are desired. `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_BASIC` implicitly enables `PSA_WANT_KEY_TYPE_xxx_PUBLIC_KEY`, as well as support for `psa_export_public_key` on the private key: there is no way to only include private-key operations (which typically saves little code).
Note: the implementation is always free to include support for more than what was explicitly requested. (For example, as of Mbed TLS 3.5.0, `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_BASIC` implicitly enables import and export support for that key type, but this may not be the case in future versions.) Applications should always request support for all operations they need, rather than rely on them being implicitly enabled by the implementation. The only thing that is documented and guaranteed in the future is as follows: `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_yyy` -> `PSA_WANT_KEY_TYPE_xxx_KEY_PAIR_BASIC` -> `PSA_WANT_KEY_TYPE_xxx_PUBLIC_KEY`.
#### Configuration symbols for elliptic curves
For elliptic curve key types, only the specified curves are included. To include a curve, include a symbol of the form **`PSA_WANT_ECC_family_size`**. For example: `PSA_WANT_ECC_SECP_R1_256` for secp256r1, `PSA_WANT_ECC_MONTGOMERY_255` for Curve25519. It is an error to require an ECC key type but no curve, and Mbed TLS will reject this at compile time.
Rationale: this is a deviation of the general principle that `PSA_ECC_FAMILY_xxx` would have a corresponding symbol `PSA_WANT_ECC_FAMILY_xxx`. This deviation is justified by the fact that it is very common to wish to include only certain curves in a family, and that can lead to a significant gain in code size.
#### Configuration symbols for Diffie-Hellman groups
There are no configuration symbols for Diffie-Hellman groups (`PSA_DH_GROUP_xxx`).
Rationale: Finite-field Diffie-Hellman code is usually not specialized for any particular group, so reducing the number of available groups at compile time only saves a little code space. Constrained implementations tend to omit FFDH anyway, so the small code size gain is not important.
#### Configuration symbols for algorithms
For each constant or constructor macro of the form `PSA_ALG_xxx`, the symbol **`PSA_WANT_ALG_xxx`** indicates that support for this algorithm is desired.
For parametrized algorithms, the `PSA_WANT_ALG_xxx` symbol indicates whether the base mechanism is supported. Parameters must themselves be included through their own `PSA_WANT_ALG_xxx` symbols. It is an error to include a base mechanism without at least one possible parameter, and Mbed TLS will reject this at compile time. For example, `PSA_WANT_ALG_ECDSA` requires the inclusion of randomized ECDSA for all hash algorithms whose corresponding symbol `PSA_WANT_ALG_xxx` is enabled.
## Implementation
### Additional non-public symbols
#### Accounting for transparent drivers
In addition to the [configuration symbols](#psa-crypto-configuration-symbols), we need two parallel or mostly parallel sets of symbols:
* **`MBEDTLS_PSA_ACCEL_xxx`** indicates whether a fully-featured, fallback-free transparent driver is available.
* **`MBEDTLS_PSA_BUILTIN_xxx`** indicates whether the software implementation is needed.
`MBEDTLS_PSA_ACCEL_xxx` is one of the outputs of the transpilation of a driver description, alongside the glue code for calling the drivers.
`MBEDTLS_PSA_BUILTIN_xxx` is enabled when `PSA_WANT_xxx` is enabled and `MBEDTLS_PSA_ACCEL_xxx` is disabled.
These symbols are not part of the public interface of Mbed TLS towards applications or to drivers, regardless of whether the symbols are actually visible.
### Architecture of symbol definitions
#### New-style definition of configuration symbols
When `MBEDTLS_PSA_CRYPTO_CONFIG` is set, the header file `mbedtls/mbedtls_config.h` needs to define all the `MBEDTLS_xxx_C` configuration symbols, including the ones deduced from the PSA Crypto configuration. It does this by including the new header file **`mbedtls/config_psa.h`**, which defines the `MBEDTLS_PSA_BUILTIN_xxx` symbols and deduces the corresponding `MBEDTLS_xxx_C` (and other) symbols.
`mbedtls/config_psa.h` includes `psa/crypto_config.h`, the user-editable file that defines application requirements.
#### Old-style definition of configuration symbols
When `MBEDTLS_PSA_CRYPTO_CONFIG` is not set, the configuration of Mbed TLS works as before, and the inclusion of non-PSA code only depends on `MBEDTLS_xxx` symbols defined (or not) in `mbedtls/mbedtls_config.h`. Furthermore, the new header file **`mbedtls/config_psa.h`** deduces PSA configuration symbols (`PSA_WANT_xxx`, `MBEDTLS_PSA_BUILTIN_xxx`) from classic configuration symbols (`MBEDTLS_xxx`).
The `PSA_WANT_xxx` definitions in `mbedtls/config_psa.h` are needed not only to build the PSA parts of the library, but also to build code that uses these parts. This includes structure definitions in `psa/crypto_struct.h`, size calculations in `psa/crypto_sizes.h`, and application code that's specific to a given cryptographic mechanism. In Mbed TLS itself, code under `MBEDTLS_USE_PSA_CRYPTO` and conditional compilation guards in tests and sample programs need `PSA_WANT_xxx`.
Since some existing applications use a handwritten `mbedtls/mbedtls_config.h` or an edited copy of `mbedtls/mbedtls_config.h` from an earlier version of Mbed TLS, `mbedtls/config_psa.h` must be included via an already existing header that is not `mbedtls/mbedtls_config.h`, so it is included via `psa/crypto.h` (for example from `psa/crypto_platform.h`).
#### Summary of definitions of configuration symbols
Whether `MBEDTLS_PSA_CRYPTO_CONFIG` is set or not, `mbedtls/config_psa.h` includes `mbedtls/crypto_drivers.h`, a header file generated by the transpilation of the driver descriptions. It defines `MBEDTLS_PSA_ACCEL_xxx` symbols according to the availability of transparent drivers without fallback.
The following table summarizes where symbols are defined depending on the configuration mode.
* (U) indicates a symbol that is defined by the user (application).
* (D) indicates a symbol that is deduced from other symbols by code that ships with Mbed TLS.
* (G) indicates a symbol that is generated from driver descriptions.
| Symbols | With `MBEDTLS_PSA_CRYPTO_CONFIG` | Without `MBEDTLS_PSA_CRYPTO_CONFIG` |
| ------------------------- | --------------------------------- | ----------------------------------- |
| `MBEDTLS_xxx_C` | `mbedtls/mbedtls_config.h` (U) or | `mbedtls/mbedtls_config.h` (U) |
| | `mbedtls/config_psa.h` (D) | |
| `PSA_WANT_xxx` | `psa/crypto_config.h` (U) | `mbedtls/config_psa.h` (D) |
| `MBEDTLS_PSA_BUILTIN_xxx` | `mbedtls/config_psa.h` (D) | `mbedtls/config_psa.h` (D) |
| `MBEDTLS_PSA_ACCEL_xxx` | `mbedtls/crypto_drivers.h` (G) | N/A |
#### Visibility of internal symbols
Ideally, the `MBEDTLS_PSA_ACCEL_xxx` and `MBEDTLS_PSA_BUILTIN_xxx` symbols should not be visible to application code or driver code, since they are not part of the public interface of the library. However these symbols are needed to deduce whether to include library modules (for example `MBEDTLS_AES_C` has to be enabled if `MBEDTLS_PSA_BUILTIN_KEY_TYPE_AES` is enabled), which makes it difficult to keep them private.
#### Compile-time checks
The header file **`library/psa_check_config.h`** applies sanity checks to the configuration, throwing `#error` if something is wrong.
A mechanism similar to `mbedtls/check_config.h` detects errors such as enabling ECDSA but no curve.
Since configuration symbols must be undefined or 1, any other value should trigger an `#error`.
#### Automatic generation of preprocessor symbol manipulations
A lot of the preprocessor symbol manipulation is systematic calculations that analyze the configuration. `mbedtls/config_psa.h` and `library/psa_check_config.h` should be generated automatically, in the same manner as `version_features.c`.
### Structure of PSA Crypto library code
#### Conditional inclusion of library entry points
An entry point can be eliminated entirely if no algorithm requires it.
#### Conditional inclusion of mechanism-specific code
Code that is specific to certain key types or to certain algorithms must be guarded by the applicable symbols: `PSA_WANT_xxx` for code that is independent of the application, and `MBEDTLS_PSA_BUILTIN_xxx` for code that calls an Mbed TLS software implementation.
## PSA standardization
### JSON configuration mechanism
At the time of writing, the preferred configuration mechanism for a PSA service is in JSON syntax. The translation from JSON to build instructions is not specified by PSA.
For PSA Crypto, the preferred configuration mechanism would be similar to capability specifications of transparent drivers. The same JSON properties that are used to mean “this driver can perform that mechanism” in a driver description would be used to mean “the application wants to perform that mechanism” in the application configuration.
### From JSON to C
The JSON capability language allows a more fine-grained selection than the C mechanism proposed here. For example, it allows requesting only single-part mechanisms, only certain key sizes, or only certain combinations of algorithms and key types.
The JSON capability language can be translated approximately to the boolean symbol mechanism proposed here. The approximation considers a feature to be enabled if any part of it is enabled. For example, if there is a capability for AES-CTR and one for CAMELLIA-GCM, the translation to boolean symbols will also include AES-GCM and CAMELLIA-CTR. If there is a capability for AES-128, the translation will also include AES-192 and AES-256.
The boolean symbol mechanism proposed here can be translated to a list of JSON capabilities: for each included algorithm, include a capability with that algorithm, the key types that apply to that algorithm, no size restriction, and all the entry points that apply to that algorithm.
## Open questions
### Open questions about the interface
#### Naming of symbols
The names of [elliptic curve symbols](#configuration-symbols-for-elliptic-curves) are a bit weird: `SECP_R1_256` instead of `SECP256R1`, `MONTGOMERY_255` instead of `CURVE25519`. Should we make them more classical, but less systematic?
#### Impossible combinations
What does it mean to have `PSA_WANT_ALG_ECDSA` enabled but with only Curve25519? Is it a mandatory error?
#### Diffie-Hellman
Way to request only specific groups? Not a priority: constrained devices don't do FFDH. Specify it as may change in future versions.
#### Coexistence with the current Mbed TLS configuration
The two mechanisms have very different designs. Is there serious potential for confusion? Do we understand how the combinations work?
### Open questions about the design
#### Algorithms without a key type or vice versa
Is it realistic to mandate a compile-time error if a key type is required, but no matching algorithm, or vice versa? Is it always the right thing, for example if there is an opaque driver that manipulates this key type?
#### Opaque-only mechanisms
If a mechanism should only be supported in an opaque driver, what does the core need to know about it? Do we have all the information we need?
This is especially relevant to suppress a mechanism completely if there is no matching algorithm. For example, if there is no transparent implementation of RSA or ECDSA, `psa_sign_hash` and `psa_verify_hash` may still be needed if there is an opaque signature driver.
### Open questions about the implementation
#### Testability
Is this proposal decently testable? There are a lot of combinations. What combinations should we test?
<!--
Local Variables:
time-stamp-line-limit: 40
time-stamp-start: "Time-stamp: *\""
time-stamp-end: "\""
time-stamp-format: "%04Y/%02m/%02d %02H:%02M:%02S %Z"
time-stamp-time-zone: "GMT"
End:
-->

View File

@@ -0,0 +1,52 @@
PSA Cryptoprocessor driver developer's guide
============================================
**This is a specification of work in progress. The implementation is not yet merged into Mbed TLS.**
For a description of the current state of drivers Mbed TLS, see our [PSA Cryptoprocessor driver development examples](../psa-driver-example-and-guide.html).
This document describes how to write drivers of cryptoprocessors such as accelerators and secure elements for the PSA cryptography subsystem of Mbed TLS.
This document focuses on behavior that is specific to Mbed TLS. For a reference of the interface between Mbed TLS and drivers, refer to the [PSA Cryptoprocessor Driver Interface specification](psa-driver-interface.html).
The interface is not fully implemented in Mbed TLS yet. Please note that the interface may still change: until further notice, we do not guarantee backward compatibility with existing driver code.
## Introduction
### Purpose
The PSA cryptography driver interface provides a way to build Mbed TLS with additional code that implements certain cryptographic primitives. This is primarily intended to support platform-specific hardware.
There are two types of drivers:
* **Transparent** drivers implement cryptographic operations on keys that are provided in cleartext at the beginning of each operation. They are typically used for hardware **accelerators**. When a transparent driver is available for a particular combination of parameters (cryptographic algorithm, key type and size, etc.), it is used instead of the default software implementation. Transparent drivers can also be pure software implementations that are distributed as plug-ins to a PSA Crypto implementation.
* **Opaque** drivers implement cryptographic operations on keys that can only be used inside a protected environment such as a **secure element**, a hardware security module, a smartcard, a secure enclave, etc. An opaque driver is invoked for the specific key location that the driver is registered for: the dispatch is based on the key's lifetime.
### Deliverables for a driver
To write a driver, you need to implement some functions with C linkage, and to declare these functions in a **driver description file**. The driver description file declares which functions the driver implements and what cryptographic mechanisms they support. Depending on the driver type, you may also need to define some C types and macros in a header file.
The concrete syntax for a driver description file is JSON. The structure of this JSON file is specified in the section [“Driver description syntax”](psa-driver-interface.html#driver-description-syntax) of the PSA cryptography driver interface specification.
A driver therefore consists of:
* A driver description file (in JSON format).
* C header files defining the types required by the driver description. The names of these header files is declared in the driver description file.
* An object file compiled for the target platform defining the functions required by the driver description. Implementations may allow drivers to be provided as source files and compiled with the core instead of being pre-compiled.
## Driver C interfaces
Mbed TLS calls driver entry points [as specified in the PSA Cryptography Driver Interface specification](psa-driver-interface.html#driver-entry-points) except as otherwise indicated in this section.
## Mbed TLS extensions
The driver description can include Mbed TLS extensions (marked by the namespace "mbedtls"). Mbed TLS extensions are meant to extend/help integrating the driver into the library's infrastructure.
* `"mbedtls/h_condition"` (optional, string) can include complex preprocessor definitions to conditionally include header files for a given driver.
* `"mbedtls/c_condition"` (optional, string) can include complex preprocessor definitions to conditionally enable dispatch capabilities for a driver.
## Building and testing your driver
<!-- TODO -->
## Dependencies on the Mbed TLS configuration
<!-- TODO -->

View File

@@ -0,0 +1,39 @@
Building Mbed TLS with PSA cryptoprocessor drivers
==================================================
**This is a specification of work in progress. The implementation is not yet merged into Mbed TLS.**
For a description of the current state of drivers Mbed TLS, see our [PSA Cryptoprocessor driver development examples](../psa-driver-example-and-guide.html).
This document describes how to build Mbed TLS with additional cryptoprocessor drivers that follow the PSA cryptoprocessor driver interface.
The interface is not fully implemented in Mbed TLS yet. Please note that the interface may still change: until further notice, we do not guarantee backward compatibility with existing driver code.
## Introduction
The PSA cryptography driver interface provides a way to build Mbed TLS with additional code that implements certain cryptographic primitives. This is primarily intended to support platform-specific hardware.
Note that such drivers are only available through the PSA cryptography API (crypto functions beginning with `psa_`, and X.509 and TLS interfaces that reference PSA types).
Concretely speaking, a driver consists of one or more **driver description files** in JSON format and some code to include in the build. The driver code can either be provided in binary form as additional object file to link, or in source form.
## How to build Mbed TLS with drivers
To build Mbed TLS with drivers:
1. Pass the driver description files through the Make variable `PSA_DRIVERS` when building the library.
```
cd /path/to/mbedtls
make PSA_DRIVERS="/path/to/acme/driver.json /path/to/nadir/driver.json" lib
```
2. Link your application with the implementation of the driver functions.
```
cd /path/to/application
ld myapp.o -L/path/to/acme -lacmedriver -L/path/to/nadir -lnadirdriver -L/path/to/mbedtls -lmbedcrypto
```
<!-- TODO: what if the driver is provided as C source code? -->
<!-- TODO: what about additional include files? -->

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,40 @@
Migrating to an auto generated psa_crypto_driver_wrappers.h file
================================================================
This document describes how to migrate to the auto generated psa_crypto_driver_wrappers.h file.
It is meant to give the library user migration guidelines while the Mbed TLS project tides over multiple minor revs of version 1.0, after which this will be merged into psa-driver-interface.md.
For a practical guide with a description of the current state of drivers Mbed TLS, see our [PSA Cryptoprocessor driver development examples](../psa-driver-example-and-guide.md).
## Introduction
The design of the Driver Wrappers code generation is based on the design proposal https://github.com/Mbed-TLS/mbedtls/pull/5067
During the process of implementation there might be minor variations wrt versioning and broader implementation specific ideas, but the design remains the same.
## Prerequisites
Python3, Jinja2 rev 2.10.1 and jsonschema rev 3.2.0
## Feature Version
1.1
### What's critical for a migrating user
The Driver Wrapper auto generation project is designed to use a python templating library ( Jinja2 ) to render templates based on drivers that are defined using a Driver description JSON file(s).
While that is the larger goal, for version 1.1 here's what's changed
#### What's changed
(1) psa_crypto_driver_wrappers.h will from this point on be auto generated.
(2) The auto generation is based on the template file at **scripts/data_files/driver_templates/psa_crypto_driver_wrappers.h.jinja**.
(3) The driver JSONS to be used for generating the psa_crypto_driver_wrappers.h file can be found at **scripts/data_files/driver_jsons/** as their default location, this path includes the schemas against which the driver schemas will be validated (driver_opaque_schema.json, driver_transparent_schema.json) and a driverlist.json which specifies the drivers to be considered and the order in which they want to be called into. The default location for driverlist.json and driver JSONS can be overloaded by passing an argument --json-dir while running the script generate_driver_wrappers.py.
(4) While the complete driver wrapper templating support is yet to come in, if the library user sees a need to patch psa_crypto_driver_wrappers.h file, the user will need to patch into the template file as needed (psa_crypto_driver_wrappers.h.jinja).
#### How to set your driver up
Please refer to psa-driver-interface.md for information on how a driver schema can be written.
One can also refer to the example test drivers/ JSON schemas under **scripts/data_files/driver_jsons/**.
The JSON file 'driverlist.json' is meant to be edited by the user to reflect the drivers one wants to use on a device. The order in which the drivers are passed is also essential if/when there are multiple transparent drivers on a given system to retain the same order in the templating.

View File

@@ -0,0 +1,180 @@
# PSA Cryptoprocessor driver development examples
As of Mbed TLS 3.4.0, the PSA Driver Interface has only been partially implemented. As a result, the deliverables for writing a driver and the method for integrating a driver with Mbed TLS will vary depending on the operation being accelerated. This document describes how to write and integrate cryptoprocessor drivers depending on which operation or driver type is being implemented.
The `docs/proposed/` directory contains three documents which pertain to the proposed, work-in-progress driver system. The [PSA Driver Interface](https://github.com/Mbed-TLS/mbedtls/blob/development/docs/proposed/psa-driver-interface.md) describes how drivers will interface with Mbed TLS in the future, as well as driver types, operation types, and entry points. As many key terms and concepts used in the examples in this document are defined in the PSA Driver Interface, it is recommended that developers read it prior to starting work on implementing drivers.
The PSA Driver [Developer](https://github.com/Mbed-TLS/mbedtls/blob/development/docs/proposed/psa-driver-developer-guide.md) Guide describes the deliverables for writing a driver that can be used with Mbed TLS, and the PSA Driver [Integration](https://github.com/Mbed-TLS/mbedtls/blob/development/docs/proposed/psa-driver-integration-guide.md) Guide describes how a driver can be built alongside Mbed TLS.
## Contents:
[Background on how Mbed TLS calls drivers](#background-on-how-mbed-tls-calls-drivers)\
[Process for Entry Points where auto-generation is implemented](#process-for-entry-points-where-auto-generation-is-implemented) \
[Process for Entry Points where auto-generation is not implemented](#process-for-entry-points-where-auto-generation-is-not-implemented) \
[Example: Manually integrating a software accelerator alongside Mbed TLS](#example-manually-integrating-a-software-accelerator-alongside-mbed-tls)
## Background on how Mbed TLS calls drivers
The PSA Driver Interface specification specifies which cryptographic operations can be accelerated by third-party drivers. Operations that are completed within one step (one function call), such as verifying a signature, are called *Single-Part Operations*. On the other hand, operations that consist of multiple steps implemented by different functions called sequentially are called *Multi-Part Operations*. Single-part operations implemented by a driver will have one entry point, while multi-part operations will have multiple: one for each step.
There are two types of drivers: *transparent* or *opaque*. See below an excerpt from the PSA Driver Interface specification defining them:
* **Transparent** drivers implement cryptographic operations on keys that are provided in cleartext at the beginning of each operation. They are typically used for hardware **accelerators**. When a transparent driver is available for a particular combination of parameters (cryptographic algorithm, key type and size, etc.), it is used instead of the default software implementation. Transparent drivers can also be pure software implementations that are distributed as plug-ins to a PSA Cryptography implementation (for example, an alternative implementation with different performance characteristics, or a certified implementation).
* **Opaque** drivers implement cryptographic operations on keys that can only be used inside a protected environment such as a **secure element**, a hardware security module, a smartcard, a secure enclave, etc. An opaque driver is invoked for the specific [key location](https://github.com/Mbed-TLS/mbedtls/blob/development/docs/proposed/psa-driver-interface.md#lifetimes-and-locations) that the driver is registered for: the dispatch is based on the key's lifetime.
Mbed TLS contains a **driver dispatch layer** (also called a driver wrapper layer). For each cryptographic operation that supports driver acceleration (or sub-part of a multi-part operation), the library calls the corresponding function in the driver wrapper. Using flags set at compile time, the driver wrapper ascertains whether any present drivers support the operation. When no such driver is present, the built-in library implementation is called as a fallback (if allowed). When a compatible driver is present, the driver wrapper calls the driver entry point function provided by the driver author.
The long-term goal is for the driver dispatch layer to be auto-generated using a JSON driver description file provided by the driver author.
For some cryptographic operations, this auto-generation logic has already been implemented. When accelerating these operations, the instructions in the above documents can be followed. For the remaining operations which do not yet support auto-generation of the driver wrapper, developers will have to manually edit the driver dispatch layer and call their driver's entry point functions from there.
Auto-generation of the driver wrapper is supported for the operation entry points specified in the table below. Certain operations are only permitted for opaque drivers. All other operation entry points do not support auto-generation of the driver wrapper.
| Transparent Driver | Opaque Driver |
|---------------------|---------------------|
| `import_key` | `import_key` |
| `export_public_key` | `export_public_key` |
| | `export_key` |
| | `copy_key` |
| | `get_builtin_key` |
### Process for Entry Points where auto-generation is implemented
If the driver is accelerating operations whose entry points are in the above table, the instructions in the driver [developer](https://github.com/Mbed-TLS/mbedtls/blob/development/docs/proposed/psa-driver-developer-guide.md) and [integration](https://github.com/Mbed-TLS/mbedtls/blob/development/docs/proposed/psa-driver-integration-guide.md) guides should be followed.
There are three deliverables for creating such a driver. These are:
- A driver description file (in JSON format).
- C header files defining the types required by the driver description. The names of these header files are declared in the driver description file.
- An object file compiled for the target platform defining the functions required by the driver description. Implementations may allow drivers to be provided as source files and compiled with the core instead of being pre-compiled.
The Mbed TLS driver tests for the aforementioned entry points provide examples of how these deliverables can be implemented. For sample driver description JSON files, see [`mbedtls_test_transparent_driver.json`](https://github.com/Mbed-TLS/mbedtls/blob/development/scripts/data_files/driver_jsons/mbedtls_test_transparent_driver.json) or [`mbedtls_test_opaque_driver.json`](https://github.com/Mbed-TLS/mbedtls/blob/development/scripts/data_files/driver_jsons/mbedtls_test_transparent_driver.json). The header file required by the driver description is [`test_driver.h`](https://github.com/Mbed-TLS/mbedtls/blob/development/tests/include/test/drivers/test_driver.h). As Mbed TLS tests are built from source, there is no object file for the test driver. However, the source for the test driver can be found under `tests/src/drivers`.
### Process for Entry Points where auto-generation is not implemented
If the driver is accelerating operations whose entry points are not present in the table, a different process is followed where the developer manually edits the driver dispatch layer. The following steps describe this process. Steps 1, 2, 3, and 7 only need to be done once *per driver*. Steps 4, 5, and 6 must be done *for each single-part operation* or *for each sub-part of a multi-part operation* implemented by the driver.
**1. Choose a driver prefix and a macro name that indicates whether the driver is enabled** \
A driver prefix is simply a word (often the name of the driver) that all functions/macros associated with the driver should begin with. This is similar to how most functions/macros in Mbed TLS begin with `PSA_XXX/psa_xxx` or `MBEDTLS_XXX/mbedtls_xxx`. The macro name can follow the form `DRIVER_PREFIX_ENABLED` or something similar; it will be used to indicate the driver is available to be called. When building with the driver present, define this macro at compile time.
**2. Include the following in one of the driver header files:**
```
#if defined(DRIVER_PREFIX_ENABLED)
#ifndef PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT
#define PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT
#endif
// other definitions here
#endif
```
**3. Conditionally include header files required by the driver**
Include any header files required by the driver in `psa_crypto_driver_wrappers.h`, placing the `#include` statements within an `#if defined` block which checks if the driver is available:
```
#if defined(DRIVER_PREFIX_ENABLED)
#include ...
#endif
```
**4. For each operation being accelerated, locate the function in the driver dispatch layer that corresponds to the entry point of that operation.** \
The file `psa_crypto_driver_wrappers.h.jinja` and `psa_crypto_driver_wrappers_no_static.c.jinja` contains the driver wrapper functions. For the entry points that have driver wrapper auto-generation implemented, the functions have been replaced with `jinja` templating logic. While the file has a `.jinja` extension, the driver wrapper functions for the remaining entry points are simple C functions. The names of these functions are of the form `psa_driver_wrapper` followed by the entry point name. So, for example, the function `psa_driver_wrapper_sign_hash()` corresponds to the `sign_hash` entry point.
**5. If a driver entry point function has been provided then ensure it has the same signature as the driver wrapper function.** \
If one has not been provided then write one. Its name should begin with the driver prefix, followed by transparent/opaque (depending on driver type), and end with the entry point name. It should have the same signature as the driver wrapper function. The purpose of the entry point function is to take arguments in PSA format for the implemented operation and return outputs/status codes in PSA format. \
*Return Codes:*
* `PSA_SUCCESS`: Successful Execution
* `PSA_ERROR_NOT_SUPPORTED`: Input arguments are correct, but the driver does not support the operation. If a transparent driver returns this then it allows fallback to another driver or software implementation.
* `PSA_ERROR_XXX`: Any other PSA error code, see API documentation
**6. Modify the driver wrapper function** \
Each driver wrapper function contains a `switch` statement which checks the location of the key. If the key is stored in local storage, then operations are performed by a transparent driver. If it is stored elsewhere, then operations are performed by an opaque driver.
* **Transparent drivers:** Calls to driver entry points go under `case PSA_KEY_LOCATION_LOCAL_STORAGE`.
* **Opaque Drivers** Calls to driver entry points go in a separate `case` block corresponding to the key location.
The diagram below shows the layout of a driver wrapper function which can dispatch to two transparent drivers `Foo` and `Bar`, and one opaque driver `Baz`.
```
psa_driver_wrapper_xxx()
├── switch(location)
| |
| ├── case PSA_KEY_LOCATION_LOCAL_STORAGE //transparent driver
| | ├── #if defined(PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT)
| | | ├── #if defined(FOO_DRIVER_PREFIX_ENABLED)
| | | | ├── if(//conditions for foo driver capibilities)
| | | | ├── foo_driver_transparent_xxx() //call to driver entry point
| | | | ├── if (status != PSA_ERROR_NOT_SUPPORTED) return status
| | | ├── #endif
| | | ├── #if defined(BAR_DRIVER_PREFIX_ENABLED)
| | | | ├── if(//conditions for bar driver capibilities)
| | | | ├── bar_driver_transparent_xxx() //call to driver entry point
| | | | ├── if (status != PSA_ERROR_NOT_SUPPORTED) return status
| | | ├── #endif
| | ├── #endif
| |
| ├── case SECURE_ELEMENT_LOCATION //opaque driver
| | ├── #if defined(PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT)
| | | ├── #if defined(BAZ_DRIVER_PREFIX_ENABLED)
| | | | ├── if(//conditions for baz driver capibilities)
| | | | ├── baz_driver_opaque_xxx() //call to driver entry point
| | | | ├── if (status != PSA_ERROR_NOT_SUPPORTED) return status
| | | ├── #endif
| | ├── #endif
└── return psa_xxx_builtin() // fall back to built in implementation
```
All code related to driver calls within each `case` must be contained between `#if defined(PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT)` and a corresponding `#endif`. Within this block, each individual driver's compatibility checks and call to the entry point must be contained between `#if defined(DRIVER_PREFIX_ENABLED)` and a corresponding `#endif`. Checks that involve accessing key material using PSA macros, such as determining the key type or number of bits, must be done in the driver wrapper.
**7. Build Mbed TLS with the driver**
This guide assumes you are building Mbed TLS from source alongside your project. If building with a driver present, the chosen driver macro (`DRIVER_PREFIX_ENABLED`) must be defined. This can be done in two ways:
* *At compile time via flags.* This is the preferred option when your project uses Mbed TLS mostly out-of-the-box without significantly modifying the configuration. This can be done by passing the option via `CFLAGS`.
* **Make**:
```
make CFLAGS="-DDRIVER_PREFIX_ENABLED"
```
* **CMake**: CFLAGS must be passed to CMake when it is invoked. Invoke CMake with
```
CFLAGS="-DDRIVER_PREFIX_ENABLED" cmake path/to/source
```
* *Providing a user config file.* This is the preferred option when your project requires a custom configuration that is significantly different to the default. Define the macro for the driver, along with any other custom configurations in a separate header file, then use `config.py`, to set `MBEDTLS_USER_CONFIG_FILE`, providing the path to the defined header file. This will include your custom config file after the default. If you wish to completely replace the default config file, set `MBEDTLS_CONFIG_FILE` instead.
### Example: Manually integrating a software accelerator alongside Mbed TLS
[p256-m](https://github.com/mpg/p256-m) is a minimalistic implementation of ECDH and ECDSA on the NIST P-256 curve, specifically optimized for use in constrained 32-bit environments. It started out as an independent project and has been integrated in Mbed TLS as a PSA transparent driver. The source code of p256-m and the driver entry points is located in the Mbed TLS source tree under `3rdparty/p256-m`. In this section, we will look at how this integration was done.
The Mbed TLS build system includes the instructions needed to build p256-m. To build with and use p256-m, set the macro `MBEDTLS_PSA_P256M_DRIVER_ENABLED` using `config.py`, then build as usual using make/cmake. From the root of the `mbedtls/` directory, run:
python3 scripts/config.py set MBEDTLS_PSA_CRYPTO_CONFIG
python3 scripts/config.py set MBEDTLS_PSA_P256M_DRIVER_ENABLED
make
(You need extra steps if you want to disable the built-in implementation of ECC algorithms, which includes more features than p256-m. Refer to the documentation of `MBEDTLS_PSA_P256M_DRIVER_ENABLED` and [`driver-only-builds.md`](driver-only-builds.md) for more information.)
The driver prefix for p256-m is `P256`/`p256`.
The p256-m driver implements the following entry points: `"import_key"`, `"export_public_key"`, `"generate_key"`, `"key_agreement"`, `"sign_hash"`, `"verify_hash"`.
There are no entry points for `"sign_message"` and `"verify_message"`, which are not necessary for a sign-and-hash algorithm. The core still implements these functions by doing the hashes and then calling the sign/verify-hash entry points.
The driver entry point functions can be found in `p256m_driver_entrypoints.[hc]`. These functions act as an interface between Mbed TLS and p256-m; converting between PSA and p256-m argument formats and performing sanity checks. If the driver's status codes differ from PSA's, it is recommended to implement a status code translation function. The function `p256_to_psa_error()` converts error codes returned by p256-m into PSA error codes.
The driver wrapper functions in `psa_crypto_driver_wrappers.h.jinja` for all four entry points have also been modified. The code block below shows the additions made to `psa_driver_wrapper_sign_hash()`. In adherence to the defined process, all code related to the driver call is placed within a check for `MBEDTLS_PSA_P256M_DRIVER_ENABLED`. p256-m only supports non-deterministic ECDSA using keys based on NIST P256; these constraints are enforced through checks (see the `if` statement). Checks that involve accessing key attributes, (e.g. checking key type or bits) **must** be performed in the driver wrapper. This is because this information is marked private and may not be accessed outside the library. Other checks can be performed here or in the entry point function. The status returned by the driver is propagated up the call hierarchy **unless** the driver does not support the operation (i.e. return `PSA_ERROR_NOT_SUPPORTED`). In that case the next available driver/built-in implementation is called.
```
#if defined (MBEDTLS_PSA_P256M_DRIVER_ENABLED)
if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) &&
PSA_ALG_IS_ECDSA(alg) &&
!PSA_ALG_ECDSA_IS_DETERMINISTIC( alg ) &&
PSA_KEY_TYPE_ECC_GET_FAMILY(attributes->core.type) == PSA_ECC_FAMILY_SECP_R1 &&
attributes->core.bits == 256 )
{
status = p256_transparent_sign_hash( attributes,
key_buffer,
key_buffer_size,
alg,
hash,
hash_length,
signature,
signature_size,
signature_length );
if( status != PSA_ERROR_NOT_SUPPORTED )
return( status );
}
#endif /* MBEDTLS_PSA_P256M_DRIVER_ENABLED */
```
Following this, p256-m is now ready to use alongside Mbed TLS as a software accelerator. If `MBEDTLS_PSA_P256M_DRIVER_ENABLED` is set in the config, p256-m's implementations of key generation, ECDH, and ECDSA will be used where applicable.

1349
externals/mbedtls/docs/psa-transition.md vendored Normal file

File diff suppressed because it is too large Load Diff

11
externals/mbedtls/docs/redirects.yaml vendored Normal file
View File

@@ -0,0 +1,11 @@
# Readthedocs redirects
# See https://docs.readthedocs.io/en/stable/user-defined-redirects.html
#
# Changes to this file do not take effect until they are merged into the
# 'development' branch. This is because the API token (RTD_TOKEN) is not
# made available in PR jobs - preventing bad actors from crafting PRs to
# expose it.
- type: exact
from_url: /projects/api/en/latest/*
to_url: /projects/api/en/development/:splat

View File

@@ -0,0 +1,3 @@
breathe
readthedocs-cli
sphinx-rtd-theme

82
externals/mbedtls/docs/requirements.txt vendored Normal file
View File

@@ -0,0 +1,82 @@
#
# This file is autogenerated by pip-compile with Python 3.9
# by the following command:
#
# pip-compile requirements.in
#
alabaster==0.7.13
# via sphinx
babel==2.12.1
# via sphinx
breathe==4.35.0
# via -r requirements.in
certifi==2022.12.7
# via requests
charset-normalizer==3.1.0
# via requests
click==8.1.3
# via readthedocs-cli
docutils==0.17.1
# via
# breathe
# sphinx
# sphinx-rtd-theme
idna==3.4
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==6.0.0
# via sphinx
jinja2==3.1.2
# via sphinx
markdown-it-py==2.2.0
# via rich
markupsafe==2.1.2
# via jinja2
mdurl==0.1.2
# via markdown-it-py
packaging==23.0
# via sphinx
pygments==2.14.0
# via
# rich
# sphinx
pyyaml==6.0
# via readthedocs-cli
readthedocs-cli==4
# via -r requirements.in
requests==2.28.2
# via
# readthedocs-cli
# sphinx
rich==13.3.5
# via readthedocs-cli
snowballstemmer==2.2.0
# via sphinx
sphinx==4.5.0
# via
# breathe
# sphinx-rtd-theme
sphinx-rtd-theme==1.2.0
# via -r requirements.in
sphinxcontrib-applehelp==1.0.4
# via sphinx
sphinxcontrib-devhelp==1.0.2
# via sphinx
sphinxcontrib-htmlhelp==2.0.1
# via sphinx
sphinxcontrib-jquery==2.0.0
# via sphinx-rtd-theme
sphinxcontrib-jsmath==1.0.1
# via sphinx
sphinxcontrib-qthelp==1.0.3
# via sphinx
sphinxcontrib-serializinghtml==1.1.5
# via sphinx
urllib3==1.26.15
# via requests
zipp==3.15.0
# via importlib-metadata
# The following packages are considered to be unsafe in a requirements file:
# setuptools

174
externals/mbedtls/docs/use-psa-crypto.md vendored Normal file
View File

@@ -0,0 +1,174 @@
This document describes the compile-time configuration option
`MBEDTLS_USE_PSA_CRYPTO` from a user's perspective.
This option:
- makes the X.509 and TLS libraries use PSA for cryptographic operations as
much as possible, see "Internal changes" below;
- enables new APIs for using keys handled by PSA Crypto, such as
`mbedtls_pk_setup_opaque()` and `mbedtls_ssl_conf_psk_opaque()`, see
"New APIs / API extensions" below.
General considerations
----------------------
**Application code:** when this option is enabled, you need to call
`psa_crypto_init()` before calling any function from the SSL/TLS, X.509 or PK
modules, except for the various mbedtls_xxx_init() functions which can be called
at any time.
**Why enable this option:** to fully take advantage of PSA drivers in PK,
X.509 and TLS. For example, enabling this option is what allows use of drivers
for ECDSA, ECDH and EC J-PAKE in those modules. However, note that even with
this option disabled, some code in PK, X.509, TLS or the crypto library might
still use PSA drivers, if it can determine it's safe to do so; currently
that's the case for hashes.
**Relationship with other options:** This option depends on
`MBEDTLS_PSA_CRYPTO_C`. These two options differ in the following way:
- `MBEDTLS_PSA_CRYPTO_C` enables the implementation of the PSA Crypto API.
When it is enabled, `psa_xxx()` APIs are available and you must call
`psa_crypto_init()` before you call any other `psa_xxx()` function. Other
modules in the library (non-PSA crypto APIs, X.509, TLS) may or may not use
PSA Crypto but you're not required to call `psa_crypto_init()` before calling
non-PSA functions, unless explicitly documented (TLS 1.3).
- `MBEDTLS_USE_PSA_CRYPTO` means that X.509 and TLS will use PSA Crypto as
much as possible (that is, everywhere except for features that are not
supported by PSA Crypto, see "Internal Changes" below for a complete list of
exceptions). When it is enabled, you need to call `psa_crypto_init()` before
calling any function from PK, X.509 or TLS; however it doesn't change anything
for the rest of the library.
**Scope:** `MBEDTLS_USE_PSA_CRYPTO` has no effect on modules other than PK,
X.509 and TLS. It also has no effect on most of the TLS 1.3 code, which always
uses PSA crypto. The parts of the TLS 1.3 code that will use PSA Crypto or not
depending on this option being set or not are:
- record protection;
- running handshake hash;
- asymmetric signature verification & generation;
- X.509 certificate chain verification.
You need to enable `MBEDTLS_USE_PSA_CRYPTO` if you want TLS 1.3 to use PSA
everywhere.
**Historical note:** This option was introduced at a time when PSA Crypto was
still beta and not ready for production, so we made its use in X.509 and TLS
opt-in: by default, these modules would keep using the stable,
production-ready legacy (pre-PSA) crypto APIs. So, the scope of was X.509 and
TLS, as well as some of PK for technical reasons. Nowadays PSA Crypto is no
longer beta, and production quality, so there's no longer any reason to make
its use in other modules opt-in. However, PSA Crypto functions require that
`psa_crypto_init()` has been called before their use, and for backwards
compatibility reasons we can't impose this requirement on non-PSA functions
that didn't have such a requirement before. So, nowadays the main meaning of
`MBEDTLS_USE_PSA_CRYPTO` is that the user promises to call `psa_crypto_init()`
before calling any PK, X.509 or TLS functions. For the same compatibility
reasons, we can't extend its scope. However, new modules in the library, such
as TLS 1.3, can be introduced with a requirement to call `psa_crypto_init()`.
New APIs / API extensions
-------------------------
### PSA-held (opaque) keys in the PK layer
**New API function:** `mbedtls_pk_setup_opaque()` - can be used to
wrap a PSA key pair into a PK context. The key can be used for private-key
operations and its public part can be exported.
**Benefits:** isolation of long-term secrets, use of PSA Crypto drivers.
**Limitations:** can only wrap a key pair, can only use it for private key
operations. (That is, signature generation, and for RSA decryption too.)
Note: for ECDSA, currently this uses randomized ECDSA while Mbed TLS uses
deterministic ECDSA by default. The following operations are not supported
with a context set this way, while they would be available with a normal
context: `mbedtls_pk_check_pair()`, `mbedtls_pk_debug()`, all public key
operations.
**Use in X.509 and TLS:** opt-in. The application needs to construct the PK context
using the new API in order to get the benefits; it can then pass the
resulting context to the following existing APIs:
- `mbedtls_ssl_conf_own_cert()` or `mbedtls_ssl_set_hs_own_cert()` to use the
key together with a certificate for certificate-based key exchanges;
- `mbedtls_x509write_csr_set_key()` to generate a CSR (certificate signature
request);
- `mbedtls_x509write_crt_set_issuer_key()` to generate a certificate.
### PSA-held (opaque) keys for TLS pre-shared keys (PSK)
**New API functions:** `mbedtls_ssl_conf_psk_opaque()` and
`mbedtls_ssl_set_hs_psk_opaque()`. Call one of these from an application to
register a PSA key for use with a PSK key exchange.
**Benefits:** isolation of long-term secrets.
**Limitations:** none.
**Use in TLS:** opt-in. The application needs to register the key using one of
the new APIs to get the benefits.
### PSA-held (opaque) keys for TLS 1.2 EC J-PAKE key exchange
**New API function:** `mbedtls_ssl_set_hs_ecjpake_password_opaque()`.
Call this function from an application to register a PSA key for use with the
TLS 1.2 EC J-PAKE key exchange.
**Benefits:** isolation of long-term secrets.
**Limitations:** none.
**Use in TLS:** opt-in. The application needs to register the key using one of
the new APIs to get the benefits.
### PSA-based operations in the Cipher layer
There is a new API function `mbedtls_cipher_setup_psa()` to set up a context
that will call PSA to store the key and perform the operations.
This function only worked for a small number of ciphers. It is now deprecated
and it is recommended to use `psa_cipher_xxx()` or `psa_aead_xxx()` functions
directly instead.
**Warning:** This function will be removed in a future version of Mbed TLS. If
you are using it and would like us to keep it, please let us know about your
use case.
Internal changes
----------------
All of these internal changes are active as soon as `MBEDTLS_USE_PSA_CRYPTO`
is enabled, no change required on the application side.
### TLS: most crypto operations based on PSA
Current exceptions:
- Finite-field (non-EC) Diffie-Hellman (used in key exchanges: DHE-RSA,
DHE-PSK).
- Restartable operations when `MBEDTLS_ECP_RESTARTABLE` is also enabled (see
the documentation of that option).
Other than the above exceptions, all crypto operations are based on PSA when
`MBEDTLS_USE_PSA_CRYPTO` is enabled.
### X.509: most crypto operations based on PSA
Current exceptions:
- Restartable operations when `MBEDTLS_ECP_RESTARTABLE` is also enabled (see
the documentation of that option).
Other than the above exception, all crypto operations are based on PSA when
`MBEDTLS_USE_PSA_CRYPTO` is enabled.
### PK layer: most crypto operations based on PSA
Current exceptions:
- Verification of RSA-PSS signatures with an MGF hash that's different from
the message hash.
- Restartable operations when `MBEDTLS_ECP_RESTARTABLE` is also enabled (see
the documentation of that option).
Other than the above exceptions, all crypto operations are based on PSA when
`MBEDTLS_USE_PSA_CRYPTO` is enabled.