Added submodule contents into tree

This commit is contained in:
darktux
2024-04-05 01:58:27 +02:00
parent 01a752555c
commit 9b991208cd
4934 changed files with 1657477 additions and 5 deletions

1
externals/mbedtls/3rdparty/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/Makefile

View File

@@ -0,0 +1,2 @@
add_subdirectory(everest)
add_subdirectory(p256-m)

View File

@@ -0,0 +1,3 @@
THIRDPARTY_DIR := $(dir $(lastword $(MAKEFILE_LIST)))
include $(THIRDPARTY_DIR)/everest/Makefile.inc
include $(THIRDPARTY_DIR)/p256-m/Makefile.inc

View File

@@ -0,0 +1 @@
Makefile

View File

@@ -0,0 +1,42 @@
set(everest_target "${MBEDTLS_TARGET_PREFIX}everest")
add_library(${everest_target}
library/everest.c
library/x25519.c
library/Hacl_Curve25519_joined.c)
target_include_directories(${everest_target}
PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<BUILD_INTERFACE:${MBEDTLS_DIR}/include>
$<INSTALL_INTERFACE:include>
PRIVATE include/everest
include/everest/kremlib
${MBEDTLS_DIR}/library/)
# Pass-through MBEDTLS_CONFIG_FILE and MBEDTLS_USER_CONFIG_FILE
# This must be duplicated from library/CMakeLists.txt because
# everest is not directly linked against any mbedtls targets
# so does not inherit the compile definitions.
if(MBEDTLS_CONFIG_FILE)
target_compile_definitions(${everest_target}
PUBLIC MBEDTLS_CONFIG_FILE="${MBEDTLS_CONFIG_FILE}")
endif()
if(MBEDTLS_USER_CONFIG_FILE)
target_compile_definitions(${everest_target}
PUBLIC MBEDTLS_USER_CONFIG_FILE="${MBEDTLS_USER_CONFIG_FILE}")
endif()
if(INSTALL_MBEDTLS_HEADERS)
install(DIRECTORY include/everest
DESTINATION include
FILE_PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ
DIRECTORY_PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE
FILES_MATCHING PATTERN "*.h")
endif(INSTALL_MBEDTLS_HEADERS)
install(TARGETS ${everest_target}
EXPORT MbedTLSTargets
DESTINATION ${CMAKE_INSTALL_LIBDIR}
PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ)

View File

@@ -0,0 +1,6 @@
THIRDPARTY_INCLUDES+=-I$(THIRDPARTY_DIR)/everest/include -I$(THIRDPARTY_DIR)/everest/include/everest -I$(THIRDPARTY_DIR)/everest/include/everest/kremlib
THIRDPARTY_CRYPTO_OBJECTS+= \
$(THIRDPARTY_DIR)/everest/library/everest.o \
$(THIRDPARTY_DIR)/everest/library/x25519.o \
$(THIRDPARTY_DIR)/everest/library/Hacl_Curve25519_joined.o

View File

@@ -0,0 +1,5 @@
The files in this directory stem from [Project Everest](https://project-everest.github.io/) and are distributed under the Apache 2.0 license.
This is a formally verified implementation of Curve25519-based handshakes. The C code is automatically derived from the (verified) [original implementation](https://github.com/project-everest/hacl-star/tree/master/code/curve25519) in the [F* language](https://github.com/fstarlang/fstar) by [KreMLin](https://github.com/fstarlang/kremlin). In addition to the improved safety and security of the implementation, it is also significantly faster than the default implementation of Curve25519 in mbedTLS.
The caveat is that not all platforms are supported, although the version in `everest/library/legacy` should work on most systems. The main issue is that some platforms do not provide a 128-bit integer type and KreMLin therefore has to use additional (also verified) code to simulate them, resulting in less of a performance gain overall. Explicitly supported platforms are currently `x86` and `x86_64` using gcc or clang, and Visual C (2010 and later).

View File

@@ -0,0 +1,21 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fbuiltin-uint128 -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#ifndef __Hacl_Curve25519_H
#define __Hacl_Curve25519_H
#include "kremlib.h"
void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint);
#define __Hacl_Curve25519_H_DEFINED
#endif

View File

@@ -0,0 +1,234 @@
/*
* Interface to code from Project Everest
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org).
*/
#ifndef MBEDTLS_EVEREST_H
#define MBEDTLS_EVEREST_H
#include "everest/x25519.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Defines the source of the imported EC key.
*/
typedef enum
{
MBEDTLS_EVEREST_ECDH_OURS, /**< Our key. */
MBEDTLS_EVEREST_ECDH_THEIRS, /**< The key of the peer. */
} mbedtls_everest_ecdh_side;
typedef struct {
mbedtls_x25519_context ctx;
} mbedtls_ecdh_context_everest;
/**
* \brief This function sets up the ECDH context with the information
* given.
*
* This function should be called after mbedtls_ecdh_init() but
* before mbedtls_ecdh_make_params(). There is no need to call
* this function before mbedtls_ecdh_read_params().
*
* This is the first function used by a TLS server for ECDHE
* ciphersuites.
*
* \param ctx The ECDH context to set up.
* \param grp_id The group id of the group to set up the context for.
*
* \return \c 0 on success.
*/
int mbedtls_everest_setup( mbedtls_ecdh_context_everest *ctx, int grp_id );
/**
* \brief This function frees a context.
*
* \param ctx The context to free.
*/
void mbedtls_everest_free( mbedtls_ecdh_context_everest *ctx );
/**
* \brief This function generates a public key and a TLS
* ServerKeyExchange payload.
*
* This is the second function used by a TLS server for ECDHE
* ciphersuites. (It is called after mbedtls_ecdh_setup().)
*
* \note This function assumes that the ECP group (grp) of the
* \p ctx context has already been properly set,
* for example, using mbedtls_ecp_group_load().
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param olen The number of characters written.
* \param buf The destination buffer.
* \param blen The length of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_make_params( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng );
/**
* \brief This function parses and processes a TLS ServerKeyExchange
* payload.
*
* This is the first function used by a TLS client for ECDHE
* ciphersuites.
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param buf The pointer to the start of the input buffer.
* \param end The address for one Byte past the end of the buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
const unsigned char **buf, const unsigned char *end );
/**
* \brief This function parses and processes a TLS ServerKeyExchange
* payload.
*
* This is the first function used by a TLS client for ECDHE
* ciphersuites.
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param buf The pointer to the start of the input buffer.
* \param end The address for one Byte past the end of the buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
const unsigned char **buf, const unsigned char *end );
/**
* \brief This function sets up an ECDH context from an EC key.
*
* It is used by clients and servers in place of the
* ServerKeyEchange for static ECDH, and imports ECDH
* parameters from the EC key information of a certificate.
*
* \see ecp.h
*
* \param ctx The ECDH context to set up.
* \param key The EC key to use.
* \param side Defines the source of the key: 1: Our key, or
* 0: The key of the peer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_everest_get_params( mbedtls_ecdh_context_everest *ctx, const mbedtls_ecp_keypair *key,
mbedtls_everest_ecdh_side side );
/**
* \brief This function generates a public key and a TLS
* ClientKeyExchange payload.
*
* This is the second function used by a TLS client for ECDH(E)
* ciphersuites.
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param olen The number of Bytes written.
* \param buf The destination buffer.
* \param blen The size of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_make_public( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng );
/**
* \brief This function parses and processes a TLS ClientKeyExchange
* payload.
*
* This is the third function used by a TLS server for ECDH(E)
* ciphersuites. (It is called after mbedtls_ecdh_setup() and
* mbedtls_ecdh_make_params().)
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param buf The start of the input buffer.
* \param blen The length of the input buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_read_public( mbedtls_ecdh_context_everest *ctx,
const unsigned char *buf, size_t blen );
/**
* \brief This function derives and exports the shared secret.
*
* This is the last function used by both TLS client
* and servers.
*
* \note If \p f_rng is not NULL, it is used to implement
* countermeasures against side-channel attacks.
* For more information, see mbedtls_ecp_mul().
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param olen The number of Bytes written.
* \param buf The destination buffer.
* \param blen The length of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_calc_secret( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng );
#ifdef __cplusplus
}
#endif
#endif /* MBEDTLS_EVEREST_H */

View File

@@ -0,0 +1,29 @@
/*
* Copyright 2016-2018 INRIA and Microsoft Corporation
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org) and
* originated from Project Everest (https://project-everest.github.io/)
*/
#ifndef __KREMLIB_H
#define __KREMLIB_H
#include "kremlin/internal/target.h"
#include "kremlin/internal/types.h"
#include "kremlin/c_endianness.h"
#endif /* __KREMLIB_H */

View File

@@ -0,0 +1,124 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir dist/uint128 -skip-compilation -extract-uints -add-include <inttypes.h> -add-include <stdbool.h> -add-include "kremlin/internal/types.h" -bundle FStar.UInt128=* extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#ifndef __FStar_UInt128_H
#define __FStar_UInt128_H
#include <inttypes.h>
#include <stdbool.h>
#include "kremlin/internal/types.h"
uint64_t FStar_UInt128___proj__Mkuint128__item__low(FStar_UInt128_uint128 projectee);
uint64_t FStar_UInt128___proj__Mkuint128__item__high(FStar_UInt128_uint128 projectee);
typedef FStar_UInt128_uint128 FStar_UInt128_t;
FStar_UInt128_uint128 FStar_UInt128_add(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128
FStar_UInt128_add_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_add_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_sub(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128
FStar_UInt128_sub_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_sub_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_logand(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_logxor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_logor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_lognot(FStar_UInt128_uint128 a);
FStar_UInt128_uint128 FStar_UInt128_shift_left(FStar_UInt128_uint128 a, uint32_t s);
FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 a, uint32_t s);
bool FStar_UInt128_eq(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
bool FStar_UInt128_gt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
bool FStar_UInt128_lt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
bool FStar_UInt128_gte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
bool FStar_UInt128_lte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_eq_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_gte_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t a);
uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 a);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Plus_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Plus_Question_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Plus_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Subtraction_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Subtraction_Question_Hat)(
FStar_UInt128_uint128 x0,
FStar_UInt128_uint128 x1
);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Subtraction_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Amp_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Hat_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Bar_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Less_Less_Hat)(FStar_UInt128_uint128 x0, uint32_t x1);
extern FStar_UInt128_uint128
(*FStar_UInt128_op_Greater_Greater_Hat)(FStar_UInt128_uint128 x0, uint32_t x1);
extern bool (*FStar_UInt128_op_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern bool
(*FStar_UInt128_op_Greater_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern bool (*FStar_UInt128_op_Less_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern bool
(*FStar_UInt128_op_Greater_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern bool
(*FStar_UInt128_op_Less_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
FStar_UInt128_uint128 FStar_UInt128_mul32(uint64_t x, uint32_t y);
FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x, uint64_t y);
#define __FStar_UInt128_H_DEFINED
#endif

View File

@@ -0,0 +1,280 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir dist/minimal -skip-compilation -extract-uints -add-include <inttypes.h> -add-include <stdbool.h> -add-include "kremlin/internal/compat.h" -add-include "kremlin/internal/types.h" -bundle FStar.UInt64+FStar.UInt32+FStar.UInt16+FStar.UInt8=* extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#ifndef __FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8_H
#define __FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8_H
#include <inttypes.h>
#include <stdbool.h>
#include "kremlin/internal/compat.h"
#include "kremlin/internal/types.h"
extern Prims_int FStar_UInt64_n;
extern Prims_int FStar_UInt64_v(uint64_t x0);
extern uint64_t FStar_UInt64_uint_to_t(Prims_int x0);
extern uint64_t FStar_UInt64_add(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_add_underspec(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_add_mod(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_sub(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_sub_underspec(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_sub_mod(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_mul(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_mul_underspec(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_mul_mod(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_mul_div(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_div(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_rem(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_logand(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_logxor(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_logor(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_lognot(uint64_t x0);
extern uint64_t FStar_UInt64_shift_right(uint64_t x0, uint32_t x1);
extern uint64_t FStar_UInt64_shift_left(uint64_t x0, uint32_t x1);
extern bool FStar_UInt64_eq(uint64_t x0, uint64_t x1);
extern bool FStar_UInt64_gt(uint64_t x0, uint64_t x1);
extern bool FStar_UInt64_gte(uint64_t x0, uint64_t x1);
extern bool FStar_UInt64_lt(uint64_t x0, uint64_t x1);
extern bool FStar_UInt64_lte(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_minus(uint64_t x0);
extern uint32_t FStar_UInt64_n_minus_one;
uint64_t FStar_UInt64_eq_mask(uint64_t a, uint64_t b);
uint64_t FStar_UInt64_gte_mask(uint64_t a, uint64_t b);
extern Prims_string FStar_UInt64_to_string(uint64_t x0);
extern uint64_t FStar_UInt64_of_string(Prims_string x0);
extern Prims_int FStar_UInt32_n;
extern Prims_int FStar_UInt32_v(uint32_t x0);
extern uint32_t FStar_UInt32_uint_to_t(Prims_int x0);
extern uint32_t FStar_UInt32_add(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_add_underspec(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_add_mod(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_sub(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_sub_underspec(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_sub_mod(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_mul(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_mul_underspec(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_mul_mod(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_mul_div(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_div(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_rem(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_logand(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_logxor(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_logor(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_lognot(uint32_t x0);
extern uint32_t FStar_UInt32_shift_right(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_shift_left(uint32_t x0, uint32_t x1);
extern bool FStar_UInt32_eq(uint32_t x0, uint32_t x1);
extern bool FStar_UInt32_gt(uint32_t x0, uint32_t x1);
extern bool FStar_UInt32_gte(uint32_t x0, uint32_t x1);
extern bool FStar_UInt32_lt(uint32_t x0, uint32_t x1);
extern bool FStar_UInt32_lte(uint32_t x0, uint32_t x1);
extern uint32_t FStar_UInt32_minus(uint32_t x0);
extern uint32_t FStar_UInt32_n_minus_one;
uint32_t FStar_UInt32_eq_mask(uint32_t a, uint32_t b);
uint32_t FStar_UInt32_gte_mask(uint32_t a, uint32_t b);
extern Prims_string FStar_UInt32_to_string(uint32_t x0);
extern uint32_t FStar_UInt32_of_string(Prims_string x0);
extern Prims_int FStar_UInt16_n;
extern Prims_int FStar_UInt16_v(uint16_t x0);
extern uint16_t FStar_UInt16_uint_to_t(Prims_int x0);
extern uint16_t FStar_UInt16_add(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_add_underspec(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_add_mod(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_sub(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_sub_underspec(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_sub_mod(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_mul(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_mul_underspec(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_mul_mod(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_mul_div(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_div(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_rem(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_logand(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_logxor(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_logor(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_lognot(uint16_t x0);
extern uint16_t FStar_UInt16_shift_right(uint16_t x0, uint32_t x1);
extern uint16_t FStar_UInt16_shift_left(uint16_t x0, uint32_t x1);
extern bool FStar_UInt16_eq(uint16_t x0, uint16_t x1);
extern bool FStar_UInt16_gt(uint16_t x0, uint16_t x1);
extern bool FStar_UInt16_gte(uint16_t x0, uint16_t x1);
extern bool FStar_UInt16_lt(uint16_t x0, uint16_t x1);
extern bool FStar_UInt16_lte(uint16_t x0, uint16_t x1);
extern uint16_t FStar_UInt16_minus(uint16_t x0);
extern uint32_t FStar_UInt16_n_minus_one;
uint16_t FStar_UInt16_eq_mask(uint16_t a, uint16_t b);
uint16_t FStar_UInt16_gte_mask(uint16_t a, uint16_t b);
extern Prims_string FStar_UInt16_to_string(uint16_t x0);
extern uint16_t FStar_UInt16_of_string(Prims_string x0);
extern Prims_int FStar_UInt8_n;
extern Prims_int FStar_UInt8_v(uint8_t x0);
extern uint8_t FStar_UInt8_uint_to_t(Prims_int x0);
extern uint8_t FStar_UInt8_add(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_add_underspec(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_add_mod(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_sub(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_sub_underspec(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_sub_mod(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_mul(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_mul_underspec(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_mul_mod(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_mul_div(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_div(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_rem(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_logand(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_logxor(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_logor(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_lognot(uint8_t x0);
extern uint8_t FStar_UInt8_shift_right(uint8_t x0, uint32_t x1);
extern uint8_t FStar_UInt8_shift_left(uint8_t x0, uint32_t x1);
extern bool FStar_UInt8_eq(uint8_t x0, uint8_t x1);
extern bool FStar_UInt8_gt(uint8_t x0, uint8_t x1);
extern bool FStar_UInt8_gte(uint8_t x0, uint8_t x1);
extern bool FStar_UInt8_lt(uint8_t x0, uint8_t x1);
extern bool FStar_UInt8_lte(uint8_t x0, uint8_t x1);
extern uint8_t FStar_UInt8_minus(uint8_t x0);
extern uint32_t FStar_UInt8_n_minus_one;
uint8_t FStar_UInt8_eq_mask(uint8_t a, uint8_t b);
uint8_t FStar_UInt8_gte_mask(uint8_t a, uint8_t b);
extern Prims_string FStar_UInt8_to_string(uint8_t x0);
extern uint8_t FStar_UInt8_of_string(Prims_string x0);
typedef uint8_t FStar_UInt8_byte;
#define __FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8_H_DEFINED
#endif

View File

@@ -0,0 +1,204 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef __KREMLIN_ENDIAN_H
#define __KREMLIN_ENDIAN_H
#include <string.h>
#include <inttypes.h>
/******************************************************************************/
/* Implementing C.fst (part 2: endian-ness macros) */
/******************************************************************************/
/* ... for Linux */
#if defined(__linux__) || defined(__CYGWIN__)
# include <endian.h>
/* ... for OSX */
#elif defined(__APPLE__)
# include <libkern/OSByteOrder.h>
# define htole64(x) OSSwapHostToLittleInt64(x)
# define le64toh(x) OSSwapLittleToHostInt64(x)
# define htobe64(x) OSSwapHostToBigInt64(x)
# define be64toh(x) OSSwapBigToHostInt64(x)
# define htole16(x) OSSwapHostToLittleInt16(x)
# define le16toh(x) OSSwapLittleToHostInt16(x)
# define htobe16(x) OSSwapHostToBigInt16(x)
# define be16toh(x) OSSwapBigToHostInt16(x)
# define htole32(x) OSSwapHostToLittleInt32(x)
# define le32toh(x) OSSwapLittleToHostInt32(x)
# define htobe32(x) OSSwapHostToBigInt32(x)
# define be32toh(x) OSSwapBigToHostInt32(x)
/* ... for Solaris */
#elif defined(__sun__)
# include <sys/byteorder.h>
# define htole64(x) LE_64(x)
# define le64toh(x) LE_64(x)
# define htobe64(x) BE_64(x)
# define be64toh(x) BE_64(x)
# define htole16(x) LE_16(x)
# define le16toh(x) LE_16(x)
# define htobe16(x) BE_16(x)
# define be16toh(x) BE_16(x)
# define htole32(x) LE_32(x)
# define le32toh(x) LE_32(x)
# define htobe32(x) BE_32(x)
# define be32toh(x) BE_32(x)
/* ... for the BSDs */
#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
# include <sys/endian.h>
#elif defined(__OpenBSD__)
# include <endian.h>
/* ... for Windows (MSVC)... not targeting XBOX 360! */
#elif defined(_MSC_VER)
# include <stdlib.h>
# define htobe16(x) _byteswap_ushort(x)
# define htole16(x) (x)
# define be16toh(x) _byteswap_ushort(x)
# define le16toh(x) (x)
# define htobe32(x) _byteswap_ulong(x)
# define htole32(x) (x)
# define be32toh(x) _byteswap_ulong(x)
# define le32toh(x) (x)
# define htobe64(x) _byteswap_uint64(x)
# define htole64(x) (x)
# define be64toh(x) _byteswap_uint64(x)
# define le64toh(x) (x)
/* ... for Windows (GCC-like, e.g. mingw or clang) */
#elif (defined(_WIN32) || defined(_WIN64)) && \
(defined(__GNUC__) || defined(__clang__))
# define htobe16(x) __builtin_bswap16(x)
# define htole16(x) (x)
# define be16toh(x) __builtin_bswap16(x)
# define le16toh(x) (x)
# define htobe32(x) __builtin_bswap32(x)
# define htole32(x) (x)
# define be32toh(x) __builtin_bswap32(x)
# define le32toh(x) (x)
# define htobe64(x) __builtin_bswap64(x)
# define htole64(x) (x)
# define be64toh(x) __builtin_bswap64(x)
# define le64toh(x) (x)
/* ... generic big-endian fallback code */
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* byte swapping code inspired by:
* https://github.com/rweather/arduinolibs/blob/master/libraries/Crypto/utility/EndianUtil.h
* */
# define htobe32(x) (x)
# define be32toh(x) (x)
# define htole32(x) \
(__extension__({ \
uint32_t _temp = (x); \
((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) | \
((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000); \
}))
# define le32toh(x) (htole32((x)))
# define htobe64(x) (x)
# define be64toh(x) (x)
# define htole64(x) \
(__extension__({ \
uint64_t __temp = (x); \
uint32_t __low = htobe32((uint32_t)__temp); \
uint32_t __high = htobe32((uint32_t)(__temp >> 32)); \
(((uint64_t)__low) << 32) | __high; \
}))
# define le64toh(x) (htole64((x)))
/* ... generic little-endian fallback code */
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define htole32(x) (x)
# define le32toh(x) (x)
# define htobe32(x) \
(__extension__({ \
uint32_t _temp = (x); \
((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) | \
((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000); \
}))
# define be32toh(x) (htobe32((x)))
# define htole64(x) (x)
# define le64toh(x) (x)
# define htobe64(x) \
(__extension__({ \
uint64_t __temp = (x); \
uint32_t __low = htobe32((uint32_t)__temp); \
uint32_t __high = htobe32((uint32_t)(__temp >> 32)); \
(((uint64_t)__low) << 32) | __high; \
}))
# define be64toh(x) (htobe64((x)))
/* ... couldn't determine endian-ness of the target platform */
#else
# error "Please define __BYTE_ORDER__!"
#endif /* defined(__linux__) || ... */
/* Loads and stores. These avoid undefined behavior due to unaligned memory
* accesses, via memcpy. */
inline static uint16_t load16(uint8_t *b) {
uint16_t x;
memcpy(&x, b, 2);
return x;
}
inline static uint32_t load32(uint8_t *b) {
uint32_t x;
memcpy(&x, b, 4);
return x;
}
inline static uint64_t load64(uint8_t *b) {
uint64_t x;
memcpy(&x, b, 8);
return x;
}
inline static void store16(uint8_t *b, uint16_t i) {
memcpy(b, &i, 2);
}
inline static void store32(uint8_t *b, uint32_t i) {
memcpy(b, &i, 4);
}
inline static void store64(uint8_t *b, uint64_t i) {
memcpy(b, &i, 8);
}
#define load16_le(b) (le16toh(load16(b)))
#define store16_le(b, i) (store16(b, htole16(i)))
#define load16_be(b) (be16toh(load16(b)))
#define store16_be(b, i) (store16(b, htobe16(i)))
#define load32_le(b) (le32toh(load32(b)))
#define store32_le(b, i) (store32(b, htole32(i)))
#define load32_be(b) (be32toh(load32(b)))
#define store32_be(b, i) (store32(b, htobe32(i)))
#define load64_le(b) (le64toh(load64(b)))
#define store64_le(b, i) (store64(b, htole64(i)))
#define load64_be(b) (be64toh(load64(b)))
#define store64_be(b, i) (store64(b, htobe64(i)))
#endif

View File

@@ -0,0 +1,16 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef __KREMLIN_BUILTIN_H
#define __KREMLIN_BUILTIN_H
/* For alloca, when using KreMLin's -falloca */
#if (defined(_WIN32) || defined(_WIN64))
# include <malloc.h>
#endif
/* If some globals need to be initialized before the main, then kremlin will
* generate and try to link last a function with this type: */
void kremlinit_globals(void);
#endif

View File

@@ -0,0 +1,46 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef __KREMLIN_CALLCONV_H
#define __KREMLIN_CALLCONV_H
/******************************************************************************/
/* Some macros to ease compatibility */
/******************************************************************************/
/* We want to generate __cdecl safely without worrying about it being undefined.
* When using MSVC, these are always defined. When using MinGW, these are
* defined too. They have no meaning for other platforms, so we define them to
* be empty macros in other situations. */
#ifndef _MSC_VER
#ifndef __cdecl
#define __cdecl
#endif
#ifndef __stdcall
#define __stdcall
#endif
#ifndef __fastcall
#define __fastcall
#endif
#endif
/* Since KreMLin emits the inline keyword unconditionally, we follow the
* guidelines at https://gcc.gnu.org/onlinedocs/gcc/Inline.html and make this
* __inline__ to ensure the code compiles with -std=c90 and earlier. */
#ifdef __GNUC__
# define inline __inline__
#endif
/* GCC-specific attribute syntax; everyone else gets the standard C inline
* attribute. */
#ifdef __GNU_C__
# ifndef __clang__
# define force_inline inline __attribute__((always_inline))
# else
# define force_inline inline
# endif
#else
# define force_inline inline
#endif
#endif

View File

@@ -0,0 +1,34 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef KRML_COMPAT_H
#define KRML_COMPAT_H
#include <inttypes.h>
/* A series of macros that define C implementations of types that are not Low*,
* to facilitate porting programs to Low*. */
typedef const char *Prims_string;
typedef struct {
uint32_t length;
const char *data;
} FStar_Bytes_bytes;
typedef int32_t Prims_pos, Prims_nat, Prims_nonzero, Prims_int,
krml_checked_int_t;
#define RETURN_OR(x) \
do { \
int64_t __ret = x; \
if (__ret < INT32_MIN || INT32_MAX < __ret) { \
KRML_HOST_PRINTF( \
"Prims.{int,nat,pos} integer overflow at %s:%d\n", __FILE__, \
__LINE__); \
KRML_HOST_EXIT(252); \
} \
return (int32_t)__ret; \
} while (0)
#endif

View File

@@ -0,0 +1,57 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef __KREMLIN_DEBUG_H
#define __KREMLIN_DEBUG_H
#include <inttypes.h>
#include "kremlin/internal/target.h"
/******************************************************************************/
/* Debugging helpers - intended only for KreMLin developers */
/******************************************************************************/
/* In support of "-wasm -d force-c": we might need this function to be
* forward-declared, because the dependency on WasmSupport appears very late,
* after SimplifyWasm, and sadly, after the topological order has been done. */
void WasmSupport_check_buffer_size(uint32_t s);
/* A series of GCC atrocities to trace function calls (kremlin's [-d c-calls]
* option). Useful when trying to debug, say, Wasm, to compare traces. */
/* clang-format off */
#ifdef __GNUC__
#define KRML_FORMAT(X) _Generic((X), \
uint8_t : "0x%08" PRIx8, \
uint16_t: "0x%08" PRIx16, \
uint32_t: "0x%08" PRIx32, \
uint64_t: "0x%08" PRIx64, \
int8_t : "0x%08" PRIx8, \
int16_t : "0x%08" PRIx16, \
int32_t : "0x%08" PRIx32, \
int64_t : "0x%08" PRIx64, \
default : "%s")
#define KRML_FORMAT_ARG(X) _Generic((X), \
uint8_t : X, \
uint16_t: X, \
uint32_t: X, \
uint64_t: X, \
int8_t : X, \
int16_t : X, \
int32_t : X, \
int64_t : X, \
default : "unknown")
/* clang-format on */
# define KRML_DEBUG_RETURN(X) \
({ \
__auto_type _ret = (X); \
KRML_HOST_PRINTF("returning: "); \
KRML_HOST_PRINTF(KRML_FORMAT(_ret), KRML_FORMAT_ARG(_ret)); \
KRML_HOST_PRINTF(" \n"); \
_ret; \
})
#endif
#endif

View File

@@ -0,0 +1,102 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef __KREMLIN_TARGET_H
#define __KREMLIN_TARGET_H
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <inttypes.h>
#include <limits.h>
#include "kremlin/internal/callconv.h"
/******************************************************************************/
/* Macros that KreMLin will generate. */
/******************************************************************************/
/* For "bare" targets that do not have a C stdlib, the user might want to use
* [-add-early-include '"mydefinitions.h"'] and override these. */
#ifndef KRML_HOST_PRINTF
# define KRML_HOST_PRINTF printf
#endif
#if ( \
(defined __STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
(!(defined KRML_HOST_EPRINTF)))
# define KRML_HOST_EPRINTF(...) fprintf(stderr, __VA_ARGS__)
#endif
#ifndef KRML_HOST_EXIT
# define KRML_HOST_EXIT exit
#endif
#ifndef KRML_HOST_MALLOC
# define KRML_HOST_MALLOC malloc
#endif
#ifndef KRML_HOST_CALLOC
# define KRML_HOST_CALLOC calloc
#endif
#ifndef KRML_HOST_FREE
# define KRML_HOST_FREE free
#endif
#ifndef KRML_HOST_TIME
# include <time.h>
/* Prims_nat not yet in scope */
inline static int32_t krml_time() {
return (int32_t)time(NULL);
}
# define KRML_HOST_TIME krml_time
#endif
/* In statement position, exiting is easy. */
#define KRML_EXIT \
do { \
KRML_HOST_PRINTF("Unimplemented function at %s:%d\n", __FILE__, __LINE__); \
KRML_HOST_EXIT(254); \
} while (0)
/* In expression position, use the comma-operator and a malloc to return an
* expression of the right size. KreMLin passes t as the parameter to the macro.
*/
#define KRML_EABORT(t, msg) \
(KRML_HOST_PRINTF("KreMLin abort at %s:%d\n%s\n", __FILE__, __LINE__, msg), \
KRML_HOST_EXIT(255), *((t *)KRML_HOST_MALLOC(sizeof(t))))
/* In FStar.Buffer.fst, the size of arrays is uint32_t, but it's a number of
* *elements*. Do an ugly, run-time check (some of which KreMLin can eliminate).
*/
#ifdef __GNUC__
# define _KRML_CHECK_SIZE_PRAGMA \
_Pragma("GCC diagnostic ignored \"-Wtype-limits\"")
#else
# define _KRML_CHECK_SIZE_PRAGMA
#endif
#define KRML_CHECK_SIZE(size_elt, sz) \
do { \
_KRML_CHECK_SIZE_PRAGMA \
if (((size_t)(sz)) > ((size_t)(SIZE_MAX / (size_elt)))) { \
KRML_HOST_PRINTF( \
"Maximum allocatable size exceeded, aborting before overflow at " \
"%s:%d\n", \
__FILE__, __LINE__); \
KRML_HOST_EXIT(253); \
} \
} while (0)
#if defined(_MSC_VER) && _MSC_VER < 1900
# define KRML_HOST_SNPRINTF(buf, sz, fmt, arg) _snprintf_s(buf, sz, _TRUNCATE, fmt, arg)
#else
# define KRML_HOST_SNPRINTF(buf, sz, fmt, arg) snprintf(buf, sz, fmt, arg)
#endif
#endif

View File

@@ -0,0 +1,61 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
#ifndef KRML_TYPES_H
#define KRML_TYPES_H
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
/* Types which are either abstract, meaning that have to be implemented in C, or
* which are models, meaning that they are swapped out at compile-time for
* hand-written C types (in which case they're marked as noextract). */
typedef uint64_t FStar_UInt64_t, FStar_UInt64_t_;
typedef int64_t FStar_Int64_t, FStar_Int64_t_;
typedef uint32_t FStar_UInt32_t, FStar_UInt32_t_;
typedef int32_t FStar_Int32_t, FStar_Int32_t_;
typedef uint16_t FStar_UInt16_t, FStar_UInt16_t_;
typedef int16_t FStar_Int16_t, FStar_Int16_t_;
typedef uint8_t FStar_UInt8_t, FStar_UInt8_t_;
typedef int8_t FStar_Int8_t, FStar_Int8_t_;
/* Only useful when building Kremlib, because it's in the dependency graph of
* FStar.Int.Cast. */
typedef uint64_t FStar_UInt63_t, FStar_UInt63_t_;
typedef int64_t FStar_Int63_t, FStar_Int63_t_;
typedef double FStar_Float_float;
typedef uint32_t FStar_Char_char;
typedef FILE *FStar_IO_fd_read, *FStar_IO_fd_write;
typedef void *FStar_Dyn_dyn;
typedef const char *C_String_t, *C_String_t_;
typedef int exit_code;
typedef FILE *channel;
typedef unsigned long long TestLib_cycles;
typedef uint64_t FStar_Date_dateTime, FStar_Date_timeSpan;
/* The uint128 type is a special case since we offer several implementations of
* it, depending on the compiler and whether the user wants the verified
* implementation or not. */
#if !defined(KRML_VERIFIED_UINT128) && defined(_MSC_VER) && defined(_M_X64)
# include <emmintrin.h>
typedef __m128i FStar_UInt128_uint128;
#elif !defined(KRML_VERIFIED_UINT128) && !defined(_MSC_VER)
typedef unsigned __int128 FStar_UInt128_uint128;
#else
typedef struct FStar_UInt128_uint128_s {
uint64_t low;
uint64_t high;
} FStar_UInt128_uint128;
#endif
typedef FStar_UInt128_uint128 FStar_UInt128_t, FStar_UInt128_t_, uint128_t;
#endif

View File

@@ -0,0 +1,5 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file is automatically included when compiling with -wasm -d force-c */
#define WasmSupport_check_buffer_size(X)

View File

@@ -0,0 +1,21 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#ifndef __Hacl_Curve25519_H
#define __Hacl_Curve25519_H
#include "kremlib.h"
void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint);
#define __Hacl_Curve25519_H_DEFINED
#endif

View File

@@ -0,0 +1,36 @@
/*
* Custom inttypes.h for VS2010 KreMLin requires these definitions,
* but VS2010 doesn't provide them.
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org)
*/
#ifndef _INTTYPES_H_VS2010
#define _INTTYPES_H_VS2010
#include <stdint.h>
#ifdef _MSC_VER
#define inline __inline
#endif
/* VS2010 unsigned long == 8 bytes */
#define PRIu64 "I64u"
#endif

View File

@@ -0,0 +1,31 @@
/*
* Custom stdbool.h for VS2010 KreMLin requires these definitions,
* but VS2010 doesn't provide them.
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org)
*/
#ifndef _STDBOOL_H_VS2010
#define _STDBOOL_H_VS2010
typedef int bool;
static bool true = 1;
static bool false = 0;
#endif

View File

@@ -0,0 +1,190 @@
/*
* ECDH with curve-optimized implementation multiplexing
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org)
*/
#ifndef MBEDTLS_X25519_H
#define MBEDTLS_X25519_H
#ifdef __cplusplus
extern "C" {
#endif
#define MBEDTLS_ECP_TLS_CURVE25519 0x1d
#define MBEDTLS_X25519_KEY_SIZE_BYTES 32
/**
* Defines the source of the imported EC key.
*/
typedef enum
{
MBEDTLS_X25519_ECDH_OURS, /**< Our key. */
MBEDTLS_X25519_ECDH_THEIRS, /**< The key of the peer. */
} mbedtls_x25519_ecdh_side;
/**
* \brief The x25519 context structure.
*/
typedef struct
{
unsigned char our_secret[MBEDTLS_X25519_KEY_SIZE_BYTES];
unsigned char peer_point[MBEDTLS_X25519_KEY_SIZE_BYTES];
} mbedtls_x25519_context;
/**
* \brief This function initializes an x25519 context.
*
* \param ctx The x25519 context to initialize.
*/
void mbedtls_x25519_init( mbedtls_x25519_context *ctx );
/**
* \brief This function frees a context.
*
* \param ctx The context to free.
*/
void mbedtls_x25519_free( mbedtls_x25519_context *ctx );
/**
* \brief This function generates a public key and a TLS
* ServerKeyExchange payload.
*
* This is the first function used by a TLS server for x25519.
*
*
* \param ctx The x25519 context.
* \param olen The number of characters written.
* \param buf The destination buffer.
* \param blen The length of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_x25519_make_params( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng );
/**
* \brief This function parses and processes a TLS ServerKeyExchange
* payload.
*
*
* \param ctx The x25519 context.
* \param buf The pointer to the start of the input buffer.
* \param end The address for one Byte past the end of the buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_x25519_read_params( mbedtls_x25519_context *ctx,
const unsigned char **buf, const unsigned char *end );
/**
* \brief This function sets up an x25519 context from an EC key.
*
* It is used by clients and servers in place of the
* ServerKeyEchange for static ECDH, and imports ECDH
* parameters from the EC key information of a certificate.
*
* \see ecp.h
*
* \param ctx The x25519 context to set up.
* \param key The EC key to use.
* \param side Defines the source of the key: 1: Our key, or
* 0: The key of the peer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_x25519_get_params( mbedtls_x25519_context *ctx, const mbedtls_ecp_keypair *key,
mbedtls_x25519_ecdh_side side );
/**
* \brief This function derives and exports the shared secret.
*
* This is the last function used by both TLS client
* and servers.
*
*
* \param ctx The x25519 context.
* \param olen The number of Bytes written.
* \param buf The destination buffer.
* \param blen The length of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_x25519_calc_secret( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng );
/**
* \brief This function generates a public key and a TLS
* ClientKeyExchange payload.
*
* This is the second function used by a TLS client for x25519.
*
* \see ecp.h
*
* \param ctx The x25519 context.
* \param olen The number of Bytes written.
* \param buf The destination buffer.
* \param blen The size of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_x25519_make_public( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng );
/**
* \brief This function parses and processes a TLS ClientKeyExchange
* payload.
*
* This is the second function used by a TLS server for x25519.
*
* \see ecp.h
*
* \param ctx The x25519 context.
* \param buf The start of the input buffer.
* \param blen The length of the input buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_x25519_read_public( mbedtls_x25519_context *ctx,
const unsigned char *buf, size_t blen );
#ifdef __cplusplus
}
#endif
#endif /* x25519.h */

View File

@@ -0,0 +1,760 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fbuiltin-uint128 -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#include "Hacl_Curve25519.h"
extern uint64_t FStar_UInt64_eq_mask(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_gte_mask(uint64_t x0, uint64_t x1);
extern uint128_t FStar_UInt128_add(uint128_t x0, uint128_t x1);
extern uint128_t FStar_UInt128_add_mod(uint128_t x0, uint128_t x1);
extern uint128_t FStar_UInt128_logand(uint128_t x0, uint128_t x1);
extern uint128_t FStar_UInt128_shift_right(uint128_t x0, uint32_t x1);
extern uint128_t FStar_UInt128_uint64_to_uint128(uint64_t x0);
extern uint64_t FStar_UInt128_uint128_to_uint64(uint128_t x0);
extern uint128_t FStar_UInt128_mul_wide(uint64_t x0, uint64_t x1);
static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
{
uint64_t b4 = b[4U];
uint64_t b0 = b[0U];
uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
b[4U] = b4_;
b[0U] = b0_;
}
inline static void Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, uint128_t *input)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint128_t xi = input[i];
output[i] = (uint64_t)xi;
}
}
inline static void
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(uint128_t *output, uint64_t *input, uint64_t s)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint128_t xi = output[i];
uint64_t yi = input[i];
output[i] = xi + (uint128_t)yi * s;
}
}
inline static void Hacl_Bignum_Fproduct_carry_wide_(uint128_t *tmp)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
{
uint32_t ctr = i;
uint128_t tctr = tmp[ctr];
uint128_t tctrp1 = tmp[ctr + (uint32_t)1U];
uint64_t r0 = (uint64_t)tctr & (uint64_t)0x7ffffffffffffU;
uint128_t c = tctr >> (uint32_t)51U;
tmp[ctr] = (uint128_t)r0;
tmp[ctr + (uint32_t)1U] = tctrp1 + c;
}
}
inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
{
uint64_t tmp = output[4U];
uint64_t b0;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
{
uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
uint64_t z = output[ctr - (uint32_t)1U];
output[ctr] = z;
}
}
output[0U] = tmp;
b0 = output[0U];
output[0U] = (uint64_t)19U * b0;
}
static void
Hacl_Bignum_Fmul_mul_shift_reduce_(uint128_t *output, uint64_t *input, uint64_t *input2)
{
uint32_t i;
uint64_t input2i;
{
uint32_t i0;
for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
{
uint64_t input2i0 = input2[i0];
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
Hacl_Bignum_Fmul_shift_reduce(input);
}
}
i = (uint32_t)4U;
input2i = input2[i];
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
}
inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
{
uint64_t tmp[5U] = { 0U };
memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = (uint128_t)(uint64_t)0U;
}
{
uint128_t b4;
uint128_t b0;
uint128_t b4_;
uint128_t b0_;
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
Hacl_Bignum_Fproduct_carry_wide_(t);
b4 = t[4U];
b0 = t[0U];
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
t[4U] = b4_;
t[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
i0 = output[0U];
i1 = output[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
output[0U] = i0_;
output[1U] = i1_;
}
}
}
inline static void Hacl_Bignum_Fsquare_fsquare__(uint128_t *tmp, uint64_t *output)
{
uint64_t r0 = output[0U];
uint64_t r1 = output[1U];
uint64_t r2 = output[2U];
uint64_t r3 = output[3U];
uint64_t r4 = output[4U];
uint64_t d0 = r0 * (uint64_t)2U;
uint64_t d1 = r1 * (uint64_t)2U;
uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
uint64_t d419 = r4 * (uint64_t)19U;
uint64_t d4 = d419 * (uint64_t)2U;
uint128_t s0 = (uint128_t)r0 * r0 + (uint128_t)d4 * r1 + (uint128_t)d2 * r3;
uint128_t s1 = (uint128_t)d0 * r1 + (uint128_t)d4 * r2 + (uint128_t)(r3 * (uint64_t)19U) * r3;
uint128_t s2 = (uint128_t)d0 * r2 + (uint128_t)r1 * r1 + (uint128_t)d4 * r3;
uint128_t s3 = (uint128_t)d0 * r3 + (uint128_t)d1 * r2 + (uint128_t)r4 * d419;
uint128_t s4 = (uint128_t)d0 * r4 + (uint128_t)d1 * r3 + (uint128_t)r2 * r2;
tmp[0U] = s0;
tmp[1U] = s1;
tmp[2U] = s2;
tmp[3U] = s3;
tmp[4U] = s4;
}
inline static void Hacl_Bignum_Fsquare_fsquare_(uint128_t *tmp, uint64_t *output)
{
uint128_t b4;
uint128_t b0;
uint128_t b4_;
uint128_t b0_;
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_Bignum_Fsquare_fsquare__(tmp, output);
Hacl_Bignum_Fproduct_carry_wide_(tmp);
b4 = tmp[4U];
b0 = tmp[0U];
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
tmp[4U] = b4_;
tmp[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
i0 = output[0U];
i1 = output[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
output[0U] = i0_;
output[1U] = i1_;
}
static void
Hacl_Bignum_Fsquare_fsquare_times_(uint64_t *input, uint128_t *tmp, uint32_t count1)
{
uint32_t i;
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
}
inline static void
Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
{
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = (uint128_t)(uint64_t)0U;
}
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
}
}
inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
{
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = (uint128_t)(uint64_t)0U;
}
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
}
}
inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
{
uint64_t buf[20U] = { 0U };
uint64_t *a0 = buf;
uint64_t *t00 = buf + (uint32_t)5U;
uint64_t *b0 = buf + (uint32_t)10U;
uint64_t *t01;
uint64_t *b1;
uint64_t *c0;
uint64_t *a;
uint64_t *t0;
uint64_t *b;
uint64_t *c;
Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
Hacl_Bignum_Fmul_fmul(b0, t00, z);
Hacl_Bignum_Fmul_fmul(a0, b0, a0);
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
Hacl_Bignum_Fmul_fmul(b0, t00, b0);
Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
t01 = buf + (uint32_t)5U;
b1 = buf + (uint32_t)10U;
c0 = buf + (uint32_t)15U;
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
Hacl_Bignum_Fmul_fmul(c0, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
Hacl_Bignum_Fmul_fmul(t01, t01, c0);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
a = buf;
t0 = buf + (uint32_t)5U;
b = buf + (uint32_t)10U;
c = buf + (uint32_t)15U;
Hacl_Bignum_Fmul_fmul(c, t0, b);
Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
Hacl_Bignum_Fmul_fmul(t0, t0, c);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
Hacl_Bignum_Fmul_fmul(t0, t0, b);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
Hacl_Bignum_Fmul_fmul(out, t0, a);
}
inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = a[i];
uint64_t yi = b[i];
a[i] = xi + yi;
}
}
inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
{
uint64_t tmp[5U] = { 0U };
uint64_t b0;
uint64_t b1;
uint64_t b2;
uint64_t b3;
uint64_t b4;
memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
b0 = tmp[0U];
b1 = tmp[1U];
b2 = tmp[2U];
b3 = tmp[3U];
b4 = tmp[4U];
tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = a[i];
uint64_t yi = tmp[i];
a[i] = yi - xi;
}
}
}
inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
{
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t tmp[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
tmp[_i] = (uint128_t)(uint64_t)0U;
}
{
uint128_t b4;
uint128_t b0;
uint128_t b4_;
uint128_t b0_;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = b[i];
tmp[i] = (uint128_t)xi * s;
}
}
Hacl_Bignum_Fproduct_carry_wide_(tmp);
b4 = tmp[4U];
b0 = tmp[0U];
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
tmp[4U] = b4_;
tmp[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
}
}
}
inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
{
Hacl_Bignum_Fmul_fmul(output, a, b);
}
inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
{
Hacl_Bignum_Crecip_crecip(output, input);
}
static void
Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
{
uint32_t i = ctr - (uint32_t)1U;
uint64_t ai = a[i];
uint64_t bi = b[i];
uint64_t x = swap1 & (ai ^ bi);
uint64_t ai1 = ai ^ x;
uint64_t bi1 = bi ^ x;
a[i] = ai1;
b[i] = bi1;
}
static void
Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
{
if (!(ctr == (uint32_t)0U))
{
uint32_t i;
Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
i = ctr - (uint32_t)1U;
Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
}
}
static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
{
uint64_t swap1 = (uint64_t)0U - iswap;
Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
}
static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
{
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
memcpy(output + (uint32_t)5U,
input + (uint32_t)5U,
(uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
}
static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
{
uint64_t i0 = load64_le(input);
uint8_t *x00 = input + (uint32_t)6U;
uint64_t i1 = load64_le(x00);
uint8_t *x01 = input + (uint32_t)12U;
uint64_t i2 = load64_le(x01);
uint8_t *x02 = input + (uint32_t)19U;
uint64_t i3 = load64_le(x02);
uint8_t *x0 = input + (uint32_t)24U;
uint64_t i4 = load64_le(x0);
uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
output[0U] = output0;
output[1U] = output1;
output[2U] = output2;
output[3U] = output3;
output[4U] = output4;
}
static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
input[0U] = t0_;
input[1U] = t1__;
input[2U] = t2__;
input[3U] = t3__;
input[4U] = t4_;
}
static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
{
Hacl_EC_Format_fcontract_first_carry_pass(input);
Hacl_Bignum_Modulo_carry_top(input);
}
static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
input[0U] = t0_;
input[1U] = t1__;
input[2U] = t2__;
input[3U] = t3__;
input[4U] = t4_;
}
static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
{
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_EC_Format_fcontract_second_carry_pass(input);
Hacl_Bignum_Modulo_carry_top(input);
i0 = input[0U];
i1 = input[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
input[0U] = i0_;
input[1U] = i1_;
}
static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
{
uint64_t a0 = input[0U];
uint64_t a1 = input[1U];
uint64_t a2 = input[2U];
uint64_t a3 = input[3U];
uint64_t a4 = input[4U];
uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
input[0U] = a0_;
input[1U] = a1_;
input[2U] = a2_;
input[3U] = a3_;
input[4U] = a4_;
}
static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t o0 = t1 << (uint32_t)51U | t0;
uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
uint8_t *b0 = output;
uint8_t *b1 = output + (uint32_t)8U;
uint8_t *b2 = output + (uint32_t)16U;
uint8_t *b3 = output + (uint32_t)24U;
store64_le(b0, o0);
store64_le(b1, o1);
store64_le(b2, o2);
store64_le(b3, o3);
}
static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
{
Hacl_EC_Format_fcontract_first_carry_full(input);
Hacl_EC_Format_fcontract_second_carry_full(input);
Hacl_EC_Format_fcontract_trim(input);
Hacl_EC_Format_fcontract_store(output, input);
}
static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
{
uint64_t *x = point;
uint64_t *z = point + (uint32_t)5U;
uint64_t buf[10U] = { 0U };
uint64_t *zmone = buf;
uint64_t *sc = buf + (uint32_t)5U;
Hacl_Bignum_crecip(zmone, z);
Hacl_Bignum_fmul(sc, x, zmone);
Hacl_EC_Format_fcontract(scalar, sc);
}
static void
Hacl_EC_AddAndDouble_fmonty(
uint64_t *pp,
uint64_t *ppq,
uint64_t *p,
uint64_t *pq,
uint64_t *qmqp
)
{
uint64_t *qx = qmqp;
uint64_t *x2 = pp;
uint64_t *z2 = pp + (uint32_t)5U;
uint64_t *x3 = ppq;
uint64_t *z3 = ppq + (uint32_t)5U;
uint64_t *x = p;
uint64_t *z = p + (uint32_t)5U;
uint64_t *xprime = pq;
uint64_t *zprime = pq + (uint32_t)5U;
uint64_t buf[40U] = { 0U };
uint64_t *origx = buf;
uint64_t *origxprime0 = buf + (uint32_t)5U;
uint64_t *xxprime0 = buf + (uint32_t)25U;
uint64_t *zzprime0 = buf + (uint32_t)30U;
uint64_t *origxprime;
uint64_t *xx0;
uint64_t *zz0;
uint64_t *xxprime;
uint64_t *zzprime;
uint64_t *zzzprime;
uint64_t *zzz;
uint64_t *xx;
uint64_t *zz;
uint64_t scalar;
memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
Hacl_Bignum_fsum(x, z);
Hacl_Bignum_fdifference(z, origx);
memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
Hacl_Bignum_fsum(xprime, zprime);
Hacl_Bignum_fdifference(zprime, origxprime0);
Hacl_Bignum_fmul(xxprime0, xprime, z);
Hacl_Bignum_fmul(zzprime0, x, zprime);
origxprime = buf + (uint32_t)5U;
xx0 = buf + (uint32_t)15U;
zz0 = buf + (uint32_t)20U;
xxprime = buf + (uint32_t)25U;
zzprime = buf + (uint32_t)30U;
zzzprime = buf + (uint32_t)35U;
memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
Hacl_Bignum_fsum(xxprime, zzprime);
Hacl_Bignum_fdifference(zzprime, origxprime);
Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
Hacl_Bignum_fmul(z3, zzzprime, qx);
Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
zzz = buf + (uint32_t)10U;
xx = buf + (uint32_t)15U;
zz = buf + (uint32_t)20U;
Hacl_Bignum_fmul(x2, xx, zz);
Hacl_Bignum_fdifference(zz, xx);
scalar = (uint64_t)121665U;
Hacl_Bignum_fscalar(zzz, zz, scalar);
Hacl_Bignum_fsum(zzz, xx);
Hacl_Bignum_fmul(z2, zzz, zz);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt
)
{
uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
uint64_t bit;
Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
bit = (uint64_t)(byt >> (uint32_t)7U);
Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt
)
{
uint8_t byt1;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
byt1 = byt << (uint32_t)1U;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt,
uint32_t i
)
{
if (!(i == (uint32_t)0U))
{
uint32_t i_ = i - (uint32_t)1U;
uint8_t byt_;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
byt_ = byt << (uint32_t)2U;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
}
}
static void
Hacl_EC_Ladder_BigLoop_cmult_big_loop(
uint8_t *n1,
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint32_t i
)
{
if (!(i == (uint32_t)0U))
{
uint32_t i1 = i - (uint32_t)1U;
uint8_t byte = n1[i1];
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
}
}
static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
{
uint64_t point_buf[40U] = { 0U };
uint64_t *nq = point_buf;
uint64_t *nqpq = point_buf + (uint32_t)10U;
uint64_t *nq2 = point_buf + (uint32_t)20U;
uint64_t *nqpq2 = point_buf + (uint32_t)30U;
Hacl_EC_Point_copy(nqpq, q);
nq[0U] = (uint64_t)1U;
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
Hacl_EC_Point_copy(result, nq);
}
void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
{
uint64_t buf0[10U] = { 0U };
uint64_t *x0 = buf0;
uint64_t *z = buf0 + (uint32_t)5U;
uint64_t *q;
Hacl_EC_Format_fexpand(x0, basepoint);
z[0U] = (uint64_t)1U;
q = buf0;
{
uint8_t e[32U] = { 0U };
uint8_t e0;
uint8_t e31;
uint8_t e01;
uint8_t e311;
uint8_t e312;
uint8_t *scalar;
memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
e0 = e[0U];
e31 = e[31U];
e01 = e0 & (uint8_t)248U;
e311 = e31 & (uint8_t)127U;
e312 = e311 | (uint8_t)64U;
e[0U] = e01;
e[31U] = e312;
scalar = e;
{
uint64_t buf[15U] = { 0U };
uint64_t *nq = buf;
uint64_t *x = nq;
x[0U] = (uint64_t)1U;
Hacl_EC_Ladder_cmult(nq, scalar, q);
Hacl_EC_Format_scalar_of_point(mypublic, nq);
}
}
}

View File

@@ -0,0 +1,50 @@
/*
* Interface to code from Project Everest
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org)
*/
#ifndef _BSD_SOURCE
/* Required to get htole64() from gcc/glibc's endian.h (older systems)
* when we compile with -std=c99 */
#define _BSD_SOURCE
#endif
#ifndef _DEFAULT_SOURCE
/* (modern version of _BSD_SOURCE) */
#define _DEFAULT_SOURCE
#endif
#include "common.h"
#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
#if defined(__SIZEOF_INT128__) && (__SIZEOF_INT128__ == 16)
#define MBEDTLS_HAVE_INT128
#endif
#if defined(MBEDTLS_HAVE_INT128)
#include "Hacl_Curve25519.c"
#else
#define KRML_VERIFIED_UINT128
#include "kremlib/FStar_UInt128_extracted.c"
#include "legacy/Hacl_Curve25519.c"
#endif
#include "kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.c"
#endif /* defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED) */

View File

@@ -0,0 +1,102 @@
/*
* Interface to code from Project Everest
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org).
*/
#include "common.h"
#include <string.h>
#include "mbedtls/ecdh.h"
#include "everest/x25519.h"
#include "everest/everest.h"
#include "mbedtls/platform.h"
#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
int mbedtls_everest_setup( mbedtls_ecdh_context_everest *ctx, int grp_id )
{
if( grp_id != MBEDTLS_ECP_DP_CURVE25519 )
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
mbedtls_x25519_init( &ctx->ctx );
return 0;
}
void mbedtls_everest_free( mbedtls_ecdh_context_everest *ctx )
{
mbedtls_x25519_free( &ctx->ctx );
}
int mbedtls_everest_make_params( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_make_params( x25519_ctx, olen, buf, blen, f_rng, p_rng );
}
int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
const unsigned char **buf,
const unsigned char *end )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_read_params( x25519_ctx, buf, end );
}
int mbedtls_everest_get_params( mbedtls_ecdh_context_everest *ctx,
const mbedtls_ecp_keypair *key,
mbedtls_everest_ecdh_side side )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
mbedtls_x25519_ecdh_side s = side == MBEDTLS_EVEREST_ECDH_OURS ?
MBEDTLS_X25519_ECDH_OURS :
MBEDTLS_X25519_ECDH_THEIRS;
return mbedtls_x25519_get_params( x25519_ctx, key, s );
}
int mbedtls_everest_make_public( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_make_public( x25519_ctx, olen, buf, blen, f_rng, p_rng );
}
int mbedtls_everest_read_public( mbedtls_ecdh_context_everest *ctx,
const unsigned char *buf, size_t blen )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_read_public ( x25519_ctx, buf, blen );
}
int mbedtls_everest_calc_secret( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_calc_secret( x25519_ctx, olen, buf, blen, f_rng, p_rng );
}
#endif /* MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED */

View File

@@ -0,0 +1,413 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir extracted -warn-error +9+11 -skip-compilation -extract-uints -add-include <inttypes.h> -add-include "kremlib.h" -add-include "kremlin/internal/compat.h" extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#include "FStar_UInt128.h"
#include "kremlin/c_endianness.h"
#include "FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h"
uint64_t FStar_UInt128___proj__Mkuint128__item__low(FStar_UInt128_uint128 projectee)
{
return projectee.low;
}
uint64_t FStar_UInt128___proj__Mkuint128__item__high(FStar_UInt128_uint128 projectee)
{
return projectee.high;
}
static uint64_t FStar_UInt128_constant_time_carry(uint64_t a, uint64_t b)
{
return (a ^ ((a ^ b) | ((a - b) ^ b))) >> (uint32_t)63U;
}
static uint64_t FStar_UInt128_carry(uint64_t a, uint64_t b)
{
return FStar_UInt128_constant_time_carry(a, b);
}
FStar_UInt128_uint128 FStar_UInt128_add(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat = { a.low + b.low, a.high + b.high + FStar_UInt128_carry(a.low + b.low, b.low) };
return flat;
}
FStar_UInt128_uint128
FStar_UInt128_add_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat = { a.low + b.low, a.high + b.high + FStar_UInt128_carry(a.low + b.low, b.low) };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_add_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat = { a.low + b.low, a.high + b.high + FStar_UInt128_carry(a.low + b.low, b.low) };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_sub(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat = { a.low - b.low, a.high - b.high - FStar_UInt128_carry(a.low, a.low - b.low) };
return flat;
}
FStar_UInt128_uint128
FStar_UInt128_sub_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat = { a.low - b.low, a.high - b.high - FStar_UInt128_carry(a.low, a.low - b.low) };
return flat;
}
static FStar_UInt128_uint128
FStar_UInt128_sub_mod_impl(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat = { a.low - b.low, a.high - b.high - FStar_UInt128_carry(a.low, a.low - b.low) };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_sub_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
return FStar_UInt128_sub_mod_impl(a, b);
}
FStar_UInt128_uint128 FStar_UInt128_logand(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128 flat = { a.low & b.low, a.high & b.high };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_logxor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128 flat = { a.low ^ b.low, a.high ^ b.high };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_logor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128 flat = { a.low | b.low, a.high | b.high };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_lognot(FStar_UInt128_uint128 a)
{
FStar_UInt128_uint128 flat = { ~a.low, ~a.high };
return flat;
}
static uint32_t FStar_UInt128_u32_64 = (uint32_t)64U;
static uint64_t FStar_UInt128_add_u64_shift_left(uint64_t hi, uint64_t lo, uint32_t s)
{
return (hi << s) + (lo >> (FStar_UInt128_u32_64 - s));
}
static uint64_t FStar_UInt128_add_u64_shift_left_respec(uint64_t hi, uint64_t lo, uint32_t s)
{
return FStar_UInt128_add_u64_shift_left(hi, lo, s);
}
static FStar_UInt128_uint128
FStar_UInt128_shift_left_small(FStar_UInt128_uint128 a, uint32_t s)
{
if (s == (uint32_t)0U)
{
return a;
}
else
{
FStar_UInt128_uint128
flat = { a.low << s, FStar_UInt128_add_u64_shift_left_respec(a.high, a.low, s) };
return flat;
}
}
static FStar_UInt128_uint128
FStar_UInt128_shift_left_large(FStar_UInt128_uint128 a, uint32_t s)
{
FStar_UInt128_uint128 flat = { (uint64_t)0U, a.low << (s - FStar_UInt128_u32_64) };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_shift_left(FStar_UInt128_uint128 a, uint32_t s)
{
if (s < FStar_UInt128_u32_64)
{
return FStar_UInt128_shift_left_small(a, s);
}
else
{
return FStar_UInt128_shift_left_large(a, s);
}
}
static uint64_t FStar_UInt128_add_u64_shift_right(uint64_t hi, uint64_t lo, uint32_t s)
{
return (lo >> s) + (hi << (FStar_UInt128_u32_64 - s));
}
static uint64_t FStar_UInt128_add_u64_shift_right_respec(uint64_t hi, uint64_t lo, uint32_t s)
{
return FStar_UInt128_add_u64_shift_right(hi, lo, s);
}
static FStar_UInt128_uint128
FStar_UInt128_shift_right_small(FStar_UInt128_uint128 a, uint32_t s)
{
if (s == (uint32_t)0U)
{
return a;
}
else
{
FStar_UInt128_uint128
flat = { FStar_UInt128_add_u64_shift_right_respec(a.high, a.low, s), a.high >> s };
return flat;
}
}
static FStar_UInt128_uint128
FStar_UInt128_shift_right_large(FStar_UInt128_uint128 a, uint32_t s)
{
FStar_UInt128_uint128 flat = { a.high >> (s - FStar_UInt128_u32_64), (uint64_t)0U };
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 a, uint32_t s)
{
if (s < FStar_UInt128_u32_64)
{
return FStar_UInt128_shift_right_small(a, s);
}
else
{
return FStar_UInt128_shift_right_large(a, s);
}
}
bool FStar_UInt128_eq(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
return a.low == b.low && a.high == b.high;
}
bool FStar_UInt128_gt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
return a.high > b.high || (a.high == b.high && a.low > b.low);
}
bool FStar_UInt128_lt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
return a.high < b.high || (a.high == b.high && a.low < b.low);
}
bool FStar_UInt128_gte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
return a.high > b.high || (a.high == b.high && a.low >= b.low);
}
bool FStar_UInt128_lte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
return a.high < b.high || (a.high == b.high && a.low <= b.low);
}
FStar_UInt128_uint128 FStar_UInt128_eq_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat =
{
FStar_UInt64_eq_mask(a.low,
b.low)
& FStar_UInt64_eq_mask(a.high, b.high),
FStar_UInt64_eq_mask(a.low,
b.low)
& FStar_UInt64_eq_mask(a.high, b.high)
};
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_gte_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
{
FStar_UInt128_uint128
flat =
{
(FStar_UInt64_gte_mask(a.high, b.high) & ~FStar_UInt64_eq_mask(a.high, b.high))
| (FStar_UInt64_eq_mask(a.high, b.high) & FStar_UInt64_gte_mask(a.low, b.low)),
(FStar_UInt64_gte_mask(a.high, b.high) & ~FStar_UInt64_eq_mask(a.high, b.high))
| (FStar_UInt64_eq_mask(a.high, b.high) & FStar_UInt64_gte_mask(a.low, b.low))
};
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t a)
{
FStar_UInt128_uint128 flat = { a, (uint64_t)0U };
return flat;
}
uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 a)
{
return a.low;
}
FStar_UInt128_uint128
(*FStar_UInt128_op_Plus_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_add;
FStar_UInt128_uint128
(*FStar_UInt128_op_Plus_Question_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_add_underspec;
FStar_UInt128_uint128
(*FStar_UInt128_op_Plus_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_add_mod;
FStar_UInt128_uint128
(*FStar_UInt128_op_Subtraction_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_sub;
FStar_UInt128_uint128
(*FStar_UInt128_op_Subtraction_Question_Hat)(
FStar_UInt128_uint128 x0,
FStar_UInt128_uint128 x1
) = FStar_UInt128_sub_underspec;
FStar_UInt128_uint128
(*FStar_UInt128_op_Subtraction_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_sub_mod;
FStar_UInt128_uint128
(*FStar_UInt128_op_Amp_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_logand;
FStar_UInt128_uint128
(*FStar_UInt128_op_Hat_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_logxor;
FStar_UInt128_uint128
(*FStar_UInt128_op_Bar_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_logor;
FStar_UInt128_uint128
(*FStar_UInt128_op_Less_Less_Hat)(FStar_UInt128_uint128 x0, uint32_t x1) =
FStar_UInt128_shift_left;
FStar_UInt128_uint128
(*FStar_UInt128_op_Greater_Greater_Hat)(FStar_UInt128_uint128 x0, uint32_t x1) =
FStar_UInt128_shift_right;
bool
(*FStar_UInt128_op_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_eq;
bool
(*FStar_UInt128_op_Greater_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_gt;
bool
(*FStar_UInt128_op_Less_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_lt;
bool
(*FStar_UInt128_op_Greater_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_gte;
bool
(*FStar_UInt128_op_Less_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
FStar_UInt128_lte;
static uint64_t FStar_UInt128_u64_mod_32(uint64_t a)
{
return a & (uint64_t)0xffffffffU;
}
static uint32_t FStar_UInt128_u32_32 = (uint32_t)32U;
static uint64_t FStar_UInt128_u32_combine(uint64_t hi, uint64_t lo)
{
return lo + (hi << FStar_UInt128_u32_32);
}
FStar_UInt128_uint128 FStar_UInt128_mul32(uint64_t x, uint32_t y)
{
FStar_UInt128_uint128
flat =
{
FStar_UInt128_u32_combine((x >> FStar_UInt128_u32_32)
* (uint64_t)y
+ (FStar_UInt128_u64_mod_32(x) * (uint64_t)y >> FStar_UInt128_u32_32),
FStar_UInt128_u64_mod_32(FStar_UInt128_u64_mod_32(x) * (uint64_t)y)),
((x >> FStar_UInt128_u32_32)
* (uint64_t)y
+ (FStar_UInt128_u64_mod_32(x) * (uint64_t)y >> FStar_UInt128_u32_32))
>> FStar_UInt128_u32_32
};
return flat;
}
typedef struct K___uint64_t_uint64_t_uint64_t_uint64_t_s
{
uint64_t fst;
uint64_t snd;
uint64_t thd;
uint64_t f3;
}
K___uint64_t_uint64_t_uint64_t_uint64_t;
static K___uint64_t_uint64_t_uint64_t_uint64_t
FStar_UInt128_mul_wide_impl_t_(uint64_t x, uint64_t y)
{
K___uint64_t_uint64_t_uint64_t_uint64_t
flat =
{
FStar_UInt128_u64_mod_32(x),
FStar_UInt128_u64_mod_32(FStar_UInt128_u64_mod_32(x) * FStar_UInt128_u64_mod_32(y)),
x
>> FStar_UInt128_u32_32,
(x >> FStar_UInt128_u32_32)
* FStar_UInt128_u64_mod_32(y)
+ (FStar_UInt128_u64_mod_32(x) * FStar_UInt128_u64_mod_32(y) >> FStar_UInt128_u32_32)
};
return flat;
}
static uint64_t FStar_UInt128_u32_combine_(uint64_t hi, uint64_t lo)
{
return lo + (hi << FStar_UInt128_u32_32);
}
static FStar_UInt128_uint128 FStar_UInt128_mul_wide_impl(uint64_t x, uint64_t y)
{
K___uint64_t_uint64_t_uint64_t_uint64_t scrut = FStar_UInt128_mul_wide_impl_t_(x, y);
uint64_t u1 = scrut.fst;
uint64_t w3 = scrut.snd;
uint64_t x_ = scrut.thd;
uint64_t t_ = scrut.f3;
FStar_UInt128_uint128
flat =
{
FStar_UInt128_u32_combine_(u1 * (y >> FStar_UInt128_u32_32) + FStar_UInt128_u64_mod_32(t_),
w3),
x_
* (y >> FStar_UInt128_u32_32)
+ (t_ >> FStar_UInt128_u32_32)
+ ((u1 * (y >> FStar_UInt128_u32_32) + FStar_UInt128_u64_mod_32(t_)) >> FStar_UInt128_u32_32)
};
return flat;
}
FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x, uint64_t y)
{
return FStar_UInt128_mul_wide_impl(x, y);
}

View File

@@ -0,0 +1,100 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir dist/minimal -skip-compilation -extract-uints -add-include <inttypes.h> -add-include <stdbool.h> -add-include "kremlin/internal/compat.h" -add-include "kremlin/internal/types.h" -bundle FStar.UInt64+FStar.UInt32+FStar.UInt16+FStar.UInt8=* extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#include "FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h"
uint64_t FStar_UInt64_eq_mask(uint64_t a, uint64_t b)
{
uint64_t x = a ^ b;
uint64_t minus_x = ~x + (uint64_t)1U;
uint64_t x_or_minus_x = x | minus_x;
uint64_t xnx = x_or_minus_x >> (uint32_t)63U;
return xnx - (uint64_t)1U;
}
uint64_t FStar_UInt64_gte_mask(uint64_t a, uint64_t b)
{
uint64_t x = a;
uint64_t y = b;
uint64_t x_xor_y = x ^ y;
uint64_t x_sub_y = x - y;
uint64_t x_sub_y_xor_y = x_sub_y ^ y;
uint64_t q = x_xor_y | x_sub_y_xor_y;
uint64_t x_xor_q = x ^ q;
uint64_t x_xor_q_ = x_xor_q >> (uint32_t)63U;
return x_xor_q_ - (uint64_t)1U;
}
uint32_t FStar_UInt32_eq_mask(uint32_t a, uint32_t b)
{
uint32_t x = a ^ b;
uint32_t minus_x = ~x + (uint32_t)1U;
uint32_t x_or_minus_x = x | minus_x;
uint32_t xnx = x_or_minus_x >> (uint32_t)31U;
return xnx - (uint32_t)1U;
}
uint32_t FStar_UInt32_gte_mask(uint32_t a, uint32_t b)
{
uint32_t x = a;
uint32_t y = b;
uint32_t x_xor_y = x ^ y;
uint32_t x_sub_y = x - y;
uint32_t x_sub_y_xor_y = x_sub_y ^ y;
uint32_t q = x_xor_y | x_sub_y_xor_y;
uint32_t x_xor_q = x ^ q;
uint32_t x_xor_q_ = x_xor_q >> (uint32_t)31U;
return x_xor_q_ - (uint32_t)1U;
}
uint16_t FStar_UInt16_eq_mask(uint16_t a, uint16_t b)
{
uint16_t x = a ^ b;
uint16_t minus_x = ~x + (uint16_t)1U;
uint16_t x_or_minus_x = x | minus_x;
uint16_t xnx = x_or_minus_x >> (uint32_t)15U;
return xnx - (uint16_t)1U;
}
uint16_t FStar_UInt16_gte_mask(uint16_t a, uint16_t b)
{
uint16_t x = a;
uint16_t y = b;
uint16_t x_xor_y = x ^ y;
uint16_t x_sub_y = x - y;
uint16_t x_sub_y_xor_y = x_sub_y ^ y;
uint16_t q = x_xor_y | x_sub_y_xor_y;
uint16_t x_xor_q = x ^ q;
uint16_t x_xor_q_ = x_xor_q >> (uint32_t)15U;
return x_xor_q_ - (uint16_t)1U;
}
uint8_t FStar_UInt8_eq_mask(uint8_t a, uint8_t b)
{
uint8_t x = a ^ b;
uint8_t minus_x = ~x + (uint8_t)1U;
uint8_t x_or_minus_x = x | minus_x;
uint8_t xnx = x_or_minus_x >> (uint32_t)7U;
return xnx - (uint8_t)1U;
}
uint8_t FStar_UInt8_gte_mask(uint8_t a, uint8_t b)
{
uint8_t x = a;
uint8_t y = b;
uint8_t x_xor_y = x ^ y;
uint8_t x_sub_y = x - y;
uint8_t x_sub_y_xor_y = x_sub_y ^ y;
uint8_t q = x_xor_y | x_sub_y_xor_y;
uint8_t x_xor_q = x ^ q;
uint8_t x_xor_q_ = x_xor_q >> (uint32_t)7U;
return x_xor_q_ - (uint8_t)1U;
}

View File

@@ -0,0 +1,805 @@
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
* KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
* F* version: 059db0c8
* KreMLin version: 916c37ac
*/
#include "Hacl_Curve25519.h"
extern uint64_t FStar_UInt64_eq_mask(uint64_t x0, uint64_t x1);
extern uint64_t FStar_UInt64_gte_mask(uint64_t x0, uint64_t x1);
extern FStar_UInt128_uint128
FStar_UInt128_add(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
FStar_UInt128_add_mod(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128
FStar_UInt128_logand(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
extern FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 x0, uint32_t x1);
extern FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t x0);
extern uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 x0);
extern FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x0, uint64_t x1);
static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
{
uint64_t b4 = b[4U];
uint64_t b0 = b[0U];
uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
b[4U] = b4_;
b[0U] = b0_;
}
inline static void
Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, FStar_UInt128_uint128 *input)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
FStar_UInt128_uint128 xi = input[i];
output[i] = FStar_UInt128_uint128_to_uint64(xi);
}
}
inline static void
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(
FStar_UInt128_uint128 *output,
uint64_t *input,
uint64_t s
)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
FStar_UInt128_uint128 xi = output[i];
uint64_t yi = input[i];
output[i] = FStar_UInt128_add_mod(xi, FStar_UInt128_mul_wide(yi, s));
}
}
inline static void Hacl_Bignum_Fproduct_carry_wide_(FStar_UInt128_uint128 *tmp)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
{
uint32_t ctr = i;
FStar_UInt128_uint128 tctr = tmp[ctr];
FStar_UInt128_uint128 tctrp1 = tmp[ctr + (uint32_t)1U];
uint64_t r0 = FStar_UInt128_uint128_to_uint64(tctr) & (uint64_t)0x7ffffffffffffU;
FStar_UInt128_uint128 c = FStar_UInt128_shift_right(tctr, (uint32_t)51U);
tmp[ctr] = FStar_UInt128_uint64_to_uint128(r0);
tmp[ctr + (uint32_t)1U] = FStar_UInt128_add(tctrp1, c);
}
}
inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
{
uint64_t tmp = output[4U];
uint64_t b0;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
{
uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
uint64_t z = output[ctr - (uint32_t)1U];
output[ctr] = z;
}
}
output[0U] = tmp;
b0 = output[0U];
output[0U] = (uint64_t)19U * b0;
}
static void
Hacl_Bignum_Fmul_mul_shift_reduce_(
FStar_UInt128_uint128 *output,
uint64_t *input,
uint64_t *input2
)
{
uint32_t i;
uint64_t input2i;
{
uint32_t i0;
for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
{
uint64_t input2i0 = input2[i0];
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
Hacl_Bignum_Fmul_shift_reduce(input);
}
}
i = (uint32_t)4U;
input2i = input2[i];
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
}
inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
{
uint64_t tmp[5U] = { 0U };
memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
{
FStar_UInt128_uint128 t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
}
{
FStar_UInt128_uint128 b4;
FStar_UInt128_uint128 b0;
FStar_UInt128_uint128 b4_;
FStar_UInt128_uint128 b0_;
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
Hacl_Bignum_Fproduct_carry_wide_(t);
b4 = t[4U];
b0 = t[0U];
b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
b0_ =
FStar_UInt128_add(b0,
FStar_UInt128_mul_wide((uint64_t)19U,
FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
t[4U] = b4_;
t[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
i0 = output[0U];
i1 = output[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
output[0U] = i0_;
output[1U] = i1_;
}
}
}
inline static void Hacl_Bignum_Fsquare_fsquare__(FStar_UInt128_uint128 *tmp, uint64_t *output)
{
uint64_t r0 = output[0U];
uint64_t r1 = output[1U];
uint64_t r2 = output[2U];
uint64_t r3 = output[3U];
uint64_t r4 = output[4U];
uint64_t d0 = r0 * (uint64_t)2U;
uint64_t d1 = r1 * (uint64_t)2U;
uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
uint64_t d419 = r4 * (uint64_t)19U;
uint64_t d4 = d419 * (uint64_t)2U;
FStar_UInt128_uint128
s0 =
FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(r0, r0),
FStar_UInt128_mul_wide(d4, r1)),
FStar_UInt128_mul_wide(d2, r3));
FStar_UInt128_uint128
s1 =
FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r1),
FStar_UInt128_mul_wide(d4, r2)),
FStar_UInt128_mul_wide(r3 * (uint64_t)19U, r3));
FStar_UInt128_uint128
s2 =
FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r2),
FStar_UInt128_mul_wide(r1, r1)),
FStar_UInt128_mul_wide(d4, r3));
FStar_UInt128_uint128
s3 =
FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r3),
FStar_UInt128_mul_wide(d1, r2)),
FStar_UInt128_mul_wide(r4, d419));
FStar_UInt128_uint128
s4 =
FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r4),
FStar_UInt128_mul_wide(d1, r3)),
FStar_UInt128_mul_wide(r2, r2));
tmp[0U] = s0;
tmp[1U] = s1;
tmp[2U] = s2;
tmp[3U] = s3;
tmp[4U] = s4;
}
inline static void Hacl_Bignum_Fsquare_fsquare_(FStar_UInt128_uint128 *tmp, uint64_t *output)
{
FStar_UInt128_uint128 b4;
FStar_UInt128_uint128 b0;
FStar_UInt128_uint128 b4_;
FStar_UInt128_uint128 b0_;
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_Bignum_Fsquare_fsquare__(tmp, output);
Hacl_Bignum_Fproduct_carry_wide_(tmp);
b4 = tmp[4U];
b0 = tmp[0U];
b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
b0_ =
FStar_UInt128_add(b0,
FStar_UInt128_mul_wide((uint64_t)19U,
FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
tmp[4U] = b4_;
tmp[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
i0 = output[0U];
i1 = output[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
output[0U] = i0_;
output[1U] = i1_;
}
static void
Hacl_Bignum_Fsquare_fsquare_times_(
uint64_t *input,
FStar_UInt128_uint128 *tmp,
uint32_t count1
)
{
uint32_t i;
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
}
inline static void
Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
{
KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
{
FStar_UInt128_uint128 t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
}
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
}
}
inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
{
KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
{
FStar_UInt128_uint128 t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
}
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
}
}
inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
{
uint64_t buf[20U] = { 0U };
uint64_t *a0 = buf;
uint64_t *t00 = buf + (uint32_t)5U;
uint64_t *b0 = buf + (uint32_t)10U;
uint64_t *t01;
uint64_t *b1;
uint64_t *c0;
uint64_t *a;
uint64_t *t0;
uint64_t *b;
uint64_t *c;
Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
Hacl_Bignum_Fmul_fmul(b0, t00, z);
Hacl_Bignum_Fmul_fmul(a0, b0, a0);
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
Hacl_Bignum_Fmul_fmul(b0, t00, b0);
Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
t01 = buf + (uint32_t)5U;
b1 = buf + (uint32_t)10U;
c0 = buf + (uint32_t)15U;
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
Hacl_Bignum_Fmul_fmul(c0, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
Hacl_Bignum_Fmul_fmul(t01, t01, c0);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
a = buf;
t0 = buf + (uint32_t)5U;
b = buf + (uint32_t)10U;
c = buf + (uint32_t)15U;
Hacl_Bignum_Fmul_fmul(c, t0, b);
Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
Hacl_Bignum_Fmul_fmul(t0, t0, c);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
Hacl_Bignum_Fmul_fmul(t0, t0, b);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
Hacl_Bignum_Fmul_fmul(out, t0, a);
}
inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = a[i];
uint64_t yi = b[i];
a[i] = xi + yi;
}
}
inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
{
uint64_t tmp[5U] = { 0U };
uint64_t b0;
uint64_t b1;
uint64_t b2;
uint64_t b3;
uint64_t b4;
memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
b0 = tmp[0U];
b1 = tmp[1U];
b2 = tmp[2U];
b3 = tmp[3U];
b4 = tmp[4U];
tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = a[i];
uint64_t yi = tmp[i];
a[i] = yi - xi;
}
}
}
inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
{
KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
{
FStar_UInt128_uint128 tmp[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
tmp[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
}
{
FStar_UInt128_uint128 b4;
FStar_UInt128_uint128 b0;
FStar_UInt128_uint128 b4_;
FStar_UInt128_uint128 b0_;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = b[i];
tmp[i] = FStar_UInt128_mul_wide(xi, s);
}
}
Hacl_Bignum_Fproduct_carry_wide_(tmp);
b4 = tmp[4U];
b0 = tmp[0U];
b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
b0_ =
FStar_UInt128_add(b0,
FStar_UInt128_mul_wide((uint64_t)19U,
FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
tmp[4U] = b4_;
tmp[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
}
}
}
inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
{
Hacl_Bignum_Fmul_fmul(output, a, b);
}
inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
{
Hacl_Bignum_Crecip_crecip(output, input);
}
static void
Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
{
uint32_t i = ctr - (uint32_t)1U;
uint64_t ai = a[i];
uint64_t bi = b[i];
uint64_t x = swap1 & (ai ^ bi);
uint64_t ai1 = ai ^ x;
uint64_t bi1 = bi ^ x;
a[i] = ai1;
b[i] = bi1;
}
static void
Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
{
if (!(ctr == (uint32_t)0U))
{
uint32_t i;
Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
i = ctr - (uint32_t)1U;
Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
}
}
static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
{
uint64_t swap1 = (uint64_t)0U - iswap;
Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
}
static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
{
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
memcpy(output + (uint32_t)5U,
input + (uint32_t)5U,
(uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
}
static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
{
uint64_t i0 = load64_le(input);
uint8_t *x00 = input + (uint32_t)6U;
uint64_t i1 = load64_le(x00);
uint8_t *x01 = input + (uint32_t)12U;
uint64_t i2 = load64_le(x01);
uint8_t *x02 = input + (uint32_t)19U;
uint64_t i3 = load64_le(x02);
uint8_t *x0 = input + (uint32_t)24U;
uint64_t i4 = load64_le(x0);
uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
output[0U] = output0;
output[1U] = output1;
output[2U] = output2;
output[3U] = output3;
output[4U] = output4;
}
static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
input[0U] = t0_;
input[1U] = t1__;
input[2U] = t2__;
input[3U] = t3__;
input[4U] = t4_;
}
static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
{
Hacl_EC_Format_fcontract_first_carry_pass(input);
Hacl_Bignum_Modulo_carry_top(input);
}
static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
input[0U] = t0_;
input[1U] = t1__;
input[2U] = t2__;
input[3U] = t3__;
input[4U] = t4_;
}
static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
{
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_EC_Format_fcontract_second_carry_pass(input);
Hacl_Bignum_Modulo_carry_top(input);
i0 = input[0U];
i1 = input[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
input[0U] = i0_;
input[1U] = i1_;
}
static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
{
uint64_t a0 = input[0U];
uint64_t a1 = input[1U];
uint64_t a2 = input[2U];
uint64_t a3 = input[3U];
uint64_t a4 = input[4U];
uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
input[0U] = a0_;
input[1U] = a1_;
input[2U] = a2_;
input[3U] = a3_;
input[4U] = a4_;
}
static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t o0 = t1 << (uint32_t)51U | t0;
uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
uint8_t *b0 = output;
uint8_t *b1 = output + (uint32_t)8U;
uint8_t *b2 = output + (uint32_t)16U;
uint8_t *b3 = output + (uint32_t)24U;
store64_le(b0, o0);
store64_le(b1, o1);
store64_le(b2, o2);
store64_le(b3, o3);
}
static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
{
Hacl_EC_Format_fcontract_first_carry_full(input);
Hacl_EC_Format_fcontract_second_carry_full(input);
Hacl_EC_Format_fcontract_trim(input);
Hacl_EC_Format_fcontract_store(output, input);
}
static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
{
uint64_t *x = point;
uint64_t *z = point + (uint32_t)5U;
uint64_t buf[10U] = { 0U };
uint64_t *zmone = buf;
uint64_t *sc = buf + (uint32_t)5U;
Hacl_Bignum_crecip(zmone, z);
Hacl_Bignum_fmul(sc, x, zmone);
Hacl_EC_Format_fcontract(scalar, sc);
}
static void
Hacl_EC_AddAndDouble_fmonty(
uint64_t *pp,
uint64_t *ppq,
uint64_t *p,
uint64_t *pq,
uint64_t *qmqp
)
{
uint64_t *qx = qmqp;
uint64_t *x2 = pp;
uint64_t *z2 = pp + (uint32_t)5U;
uint64_t *x3 = ppq;
uint64_t *z3 = ppq + (uint32_t)5U;
uint64_t *x = p;
uint64_t *z = p + (uint32_t)5U;
uint64_t *xprime = pq;
uint64_t *zprime = pq + (uint32_t)5U;
uint64_t buf[40U] = { 0U };
uint64_t *origx = buf;
uint64_t *origxprime0 = buf + (uint32_t)5U;
uint64_t *xxprime0 = buf + (uint32_t)25U;
uint64_t *zzprime0 = buf + (uint32_t)30U;
uint64_t *origxprime;
uint64_t *xx0;
uint64_t *zz0;
uint64_t *xxprime;
uint64_t *zzprime;
uint64_t *zzzprime;
uint64_t *zzz;
uint64_t *xx;
uint64_t *zz;
uint64_t scalar;
memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
Hacl_Bignum_fsum(x, z);
Hacl_Bignum_fdifference(z, origx);
memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
Hacl_Bignum_fsum(xprime, zprime);
Hacl_Bignum_fdifference(zprime, origxprime0);
Hacl_Bignum_fmul(xxprime0, xprime, z);
Hacl_Bignum_fmul(zzprime0, x, zprime);
origxprime = buf + (uint32_t)5U;
xx0 = buf + (uint32_t)15U;
zz0 = buf + (uint32_t)20U;
xxprime = buf + (uint32_t)25U;
zzprime = buf + (uint32_t)30U;
zzzprime = buf + (uint32_t)35U;
memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
Hacl_Bignum_fsum(xxprime, zzprime);
Hacl_Bignum_fdifference(zzprime, origxprime);
Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
Hacl_Bignum_fmul(z3, zzzprime, qx);
Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
zzz = buf + (uint32_t)10U;
xx = buf + (uint32_t)15U;
zz = buf + (uint32_t)20U;
Hacl_Bignum_fmul(x2, xx, zz);
Hacl_Bignum_fdifference(zz, xx);
scalar = (uint64_t)121665U;
Hacl_Bignum_fscalar(zzz, zz, scalar);
Hacl_Bignum_fsum(zzz, xx);
Hacl_Bignum_fmul(z2, zzz, zz);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt
)
{
uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
uint64_t bit;
Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
bit = (uint64_t)(byt >> (uint32_t)7U);
Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt
)
{
uint8_t byt1;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
byt1 = byt << (uint32_t)1U;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt,
uint32_t i
)
{
if (!(i == (uint32_t)0U))
{
uint32_t i_ = i - (uint32_t)1U;
uint8_t byt_;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
byt_ = byt << (uint32_t)2U;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
}
}
static void
Hacl_EC_Ladder_BigLoop_cmult_big_loop(
uint8_t *n1,
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint32_t i
)
{
if (!(i == (uint32_t)0U))
{
uint32_t i1 = i - (uint32_t)1U;
uint8_t byte = n1[i1];
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
}
}
static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
{
uint64_t point_buf[40U] = { 0U };
uint64_t *nq = point_buf;
uint64_t *nqpq = point_buf + (uint32_t)10U;
uint64_t *nq2 = point_buf + (uint32_t)20U;
uint64_t *nqpq2 = point_buf + (uint32_t)30U;
Hacl_EC_Point_copy(nqpq, q);
nq[0U] = (uint64_t)1U;
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
Hacl_EC_Point_copy(result, nq);
}
void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
{
uint64_t buf0[10U] = { 0U };
uint64_t *x0 = buf0;
uint64_t *z = buf0 + (uint32_t)5U;
uint64_t *q;
Hacl_EC_Format_fexpand(x0, basepoint);
z[0U] = (uint64_t)1U;
q = buf0;
{
uint8_t e[32U] = { 0U };
uint8_t e0;
uint8_t e31;
uint8_t e01;
uint8_t e311;
uint8_t e312;
uint8_t *scalar;
memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
e0 = e[0U];
e31 = e[31U];
e01 = e0 & (uint8_t)248U;
e311 = e31 & (uint8_t)127U;
e312 = e311 | (uint8_t)64U;
e[0U] = e01;
e[31U] = e312;
scalar = e;
{
uint64_t buf[15U] = { 0U };
uint64_t *nq = buf;
uint64_t *x = nq;
x[0U] = (uint64_t)1U;
Hacl_EC_Ladder_cmult(nq, scalar, q);
Hacl_EC_Format_scalar_of_point(mypublic, nq);
}
}
}

View File

@@ -0,0 +1,186 @@
/*
* ECDH with curve-optimized implementation multiplexing
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org)
*/
#include "common.h"
#if defined(MBEDTLS_ECDH_C) && defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
#include <mbedtls/ecdh.h>
#if !(defined(__SIZEOF_INT128__) && (__SIZEOF_INT128__ == 16))
#define KRML_VERIFIED_UINT128
#endif
#include <Hacl_Curve25519.h>
#include <mbedtls/platform_util.h>
#include "x25519.h"
#include <string.h>
/*
* Initialize context
*/
void mbedtls_x25519_init( mbedtls_x25519_context *ctx )
{
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_x25519_context ) );
}
/*
* Free context
*/
void mbedtls_x25519_free( mbedtls_x25519_context *ctx )
{
if( ctx == NULL )
return;
mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
mbedtls_platform_zeroize( ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
}
int mbedtls_x25519_make_params( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = 0;
uint8_t base[MBEDTLS_X25519_KEY_SIZE_BYTES] = {0};
if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
return ret;
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 4;
if( blen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
*buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
*buf++ = MBEDTLS_ECP_TLS_CURVE25519 >> 8;
*buf++ = MBEDTLS_ECP_TLS_CURVE25519 & 0xFF;
*buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
base[0] = 9;
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
base[0] = 0;
if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
return( 0 );
}
int mbedtls_x25519_read_params( mbedtls_x25519_context *ctx,
const unsigned char **buf, const unsigned char *end )
{
if( end - *buf < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
if( ( *(*buf)++ != MBEDTLS_X25519_KEY_SIZE_BYTES ) )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
memcpy( ctx->peer_point, *buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
*buf += MBEDTLS_X25519_KEY_SIZE_BYTES;
return( 0 );
}
int mbedtls_x25519_get_params( mbedtls_x25519_context *ctx, const mbedtls_ecp_keypair *key,
mbedtls_x25519_ecdh_side side )
{
size_t olen = 0;
switch( side ) {
case MBEDTLS_X25519_ECDH_THEIRS:
return mbedtls_ecp_point_write_binary( &key->grp, &key->Q, MBEDTLS_ECP_PF_COMPRESSED, &olen, ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
case MBEDTLS_X25519_ECDH_OURS:
return mbedtls_mpi_write_binary_le( &key->d, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
default:
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
}
int mbedtls_x25519_calc_secret( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng )
{
/* f_rng and p_rng are not used here because this implementation does not
need blinding since it has constant trace. */
(( void )f_rng);
(( void )p_rng);
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES;
if( blen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, ctx->peer_point);
/* Wipe the DH secret and don't let the peer chose a small subgroup point */
mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
if( memcmp( buf, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
return( 0 );
}
int mbedtls_x25519_make_public( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = 0;
unsigned char base[MBEDTLS_X25519_KEY_SIZE_BYTES] = { 0 };
if( ctx == NULL )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
return ret;
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 1;
if( blen < *olen )
return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
*buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
base[0] = 9;
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
base[0] = 0;
if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES ) == 0 )
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
return( ret );
}
int mbedtls_x25519_read_public( mbedtls_x25519_context *ctx,
const unsigned char *buf, size_t blen )
{
if( blen < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
if( (*buf++ != MBEDTLS_X25519_KEY_SIZE_BYTES) )
return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
memcpy( ctx->peer_point, buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
return( 0 );
}
#endif /* MBEDTLS_ECDH_C && MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED */

View File

@@ -0,0 +1,40 @@
set(p256m_target ${MBEDTLS_TARGET_PREFIX}p256m)
add_library(${p256m_target}
p256-m_driver_entrypoints.c
p256-m/p256-m.c)
target_include_directories(${p256m_target}
PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/p256-m>
$<BUILD_INTERFACE:${MBEDTLS_DIR}/include>
$<INSTALL_INTERFACE:include>
PRIVATE ${MBEDTLS_DIR}/library/)
# Pass-through MBEDTLS_CONFIG_FILE and MBEDTLS_USER_CONFIG_FILE
# This must be duplicated from library/CMakeLists.txt because
# p256m is not directly linked against any mbedtls targets
# so does not inherit the compile definitions.
if(MBEDTLS_CONFIG_FILE)
target_compile_definitions(${p256m_target}
PUBLIC MBEDTLS_CONFIG_FILE="${MBEDTLS_CONFIG_FILE}")
endif()
if(MBEDTLS_USER_CONFIG_FILE)
target_compile_definitions(${p256m_target}
PUBLIC MBEDTLS_USER_CONFIG_FILE="${MBEDTLS_USER_CONFIG_FILE}")
endif()
if(INSTALL_MBEDTLS_HEADERS)
install(DIRECTORY :${CMAKE_CURRENT_SOURCE_DIR}
DESTINATION include
FILE_PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ
DIRECTORY_PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE
FILES_MATCHING PATTERN "*.h")
endif(INSTALL_MBEDTLS_HEADERS)
install(TARGETS ${p256m_target}
EXPORT MbedTLSTargets
DESTINATION ${CMAKE_INSTALL_LIBDIR}
PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ)

View File

@@ -0,0 +1,5 @@
THIRDPARTY_INCLUDES+=-I$(THIRDPARTY_DIR)/p256-m/p256-m/include -I$(THIRDPARTY_DIR)/p256-m/p256-m/include/p256-m -I$(THIRDPARTY_DIR)/p256-m/p256-m_driver_interface
THIRDPARTY_CRYPTO_OBJECTS+= \
$(THIRDPARTY_DIR)/p256-m//p256-m_driver_entrypoints.o \
$(THIRDPARTY_DIR)/p256-m//p256-m/p256-m.o

View File

@@ -0,0 +1,4 @@
The files within the `p256-m/` subdirectory originate from the [p256-m GitHub repository](https://github.com/mpg/p256-m). They are distributed here under a dual Apache-2.0 OR GPL-2.0-or-later license. They are authored by Manuel Pégourié-Gonnard. p256-m is a minimalistic implementation of ECDH and ECDSA on NIST P-256, especially suited to constrained 32-bit environments. Mbed TLS documentation for integrating drivers uses p256-m as an example of a software accelerator, and describes how it can be integrated alongside Mbed TLS. It should be noted that p256-m files in the Mbed TLS repo will not be updated regularly, so they may not have fixes and improvements present in the upstream project.
The files `p256-m.c`, `p256-m.h` and `README.md` have been taken from the `p256-m` repository.
It should be noted that p256-m deliberately does not supply its own cryptographically secure RNG function. As a result, the PSA RNG is used, with `p256_generate_random()` wrapping `psa_generate_random()`.

View File

@@ -0,0 +1,544 @@
*This is the original README for the p256-m repository. Please note that as
only a subset of p256-m's files are present in Mbed TLS, this README may refer
to files that are not present/relevant here.*
p256-m is a minimalistic implementation of ECDH and ECDSA on NIST P-256,
especially suited to constrained 32-bit environments. It's written in standard
C, with optional bits of assembly for Arm Cortex-M and Cortex-A CPUs.
Its design is guided by the following goals in this order:
1. correctness & security;
2. low code size & RAM usage;
3. runtime performance.
Most cryptographic implementations care more about speed than footprint, and
some might even risk weakening security for more speed. p256-m was written
because I wanted to see what happened when reversing the usual emphasis.
The result is a full implementation of ECDH and ECDSA in **less than 3KiB of
code**, using **less than 768 bytes of RAM**, with comparable performance
to existing implementations (see below) - in less than 700 LOC.
_Contents of this Readme:_
- [Correctness](#correctness)
- [Security](#security)
- [Code size](#code-size)
- [RAM usage](#ram-usage)
- [Runtime performance](#runtime-performance)
- [Comparison with other implementations](#comparison-with-other-implementations)
- [Design overview](#design-overview)
- [Notes about other curves](#notes-about-other-curves)
- [Notes about other platforms](#notes-about-other-platforms)
## Correctness
**API design:**
- The API is minimal: only 4 public functions.
- Each public function fully validates its inputs and returns specific errors.
- The API uses arrays of octets for all input and output.
**Testing:**
- p256-m is validated against multiple test vectors from various RFCs and
NIST.
- In addition, crafted inputs are used for negative testing and to reach
corner cases.
- Two test suites are provided: one for closed-box testing (using only the
public API), one for open-box testing (for unit-testing internal functions,
and reaching more error cases by exploiting knowledge of how the RNG is used).
- The resulting branch coverage is maximal: closed-box testing reaches all
branches except four; three of them are reached by open-box testing using a
rigged RNG; the last branch could only be reached by computing a discrete log
on P-256... See `coverage.sh`.
- Testing also uses dynamic analysis: valgrind, ASan, MemSan, UBSan.
**Code quality:**
- The code is standard C99; it builds without warnings with `clang
-Weverything` and `gcc -Wall -Wextra -pedantic`.
- The code is small and well documented, including internal APIs: with the
header file, it's less than 700 lines of code, and more lines of comments
than of code.
- However it _has not been reviewed_ independently so far, as this is a
personal project.
**Short Weierstrass pitfalls:**
Its has been [pointed out](https://safecurves.cr.yp.to/) that the NIST curves,
and indeed all Short Weierstrass curves, have a number of pitfalls including
risk for the implementation to:
- "produce incorrect results for some rare curve points" - this is avoided by
carefully checking the validity domain of formulas used throughout the code;
- "leak secret data when the input isn't a curve point" - this is avoided by
validating that points lie on the curve every time a point is deserialized.
## Security
In addition to the above correctness claims, p256-m has the following
properties:
- it has no branch depending (even indirectly) on secret data;
- it has no memory access depending (even indirectly) on secret data.
These properties are checked using valgrind and MemSan with the ideas
behind [ctgrind](https://github.com/agl/ctgrind), see `consttime.sh`.
In addition to avoiding branches and memory accesses depending on secret data,
p256-m also avoid instructions (or library functions) whose execution time
depends on the value of operands on cores of interest. Namely, it never uses
integer division, and for multiplication by default it only uses 16x16->32 bit
unsigned multiplication. On cores which have a constant-time 32x32->64 bit
unsigned multiplication instruction, the symbol `MUL64_IS_CONSTANT_TIME` can
be defined by the user at compile-time to take advantage of it in order to
improve performance and code size. (On Cortex-M and Cortex-A cores wtih GCC or
Clang this is not necessary, since inline assembly is used instead.)
As a result, p256-m should be secure against the following classes of attackers:
1. attackers who can only manipulate the input and observe the output;
2. attackers who can also measure the total computation time of the operation;
3. attackers who can also observe and manipulate micro-architectural features
such as the cache or branch predictor with arbitrary precision.
However, p256-m makes no attempt to protect against:
4. passive physical attackers who can record traces of physical emissions
(power, EM, sound) of the CPU while it manipulates secrets;
5. active physical attackers who can also inject faults in the computation.
(Note: p256-m should actually be secure against SPA, by virtue of being fully
constant-flow, but is not expected to resist any other physical attack.)
**Warning:** p256-m requires an externally-provided RNG function. If that
function is not cryptographically secure, then neither is p256-m's key
generation or ECDSA signature generation.
_Note:_ p256-m also follows best practices such as securely erasing secret
data on the stack before returning.
## Code size
Compiled with
[ARM-GCC 9](https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads),
with `-mthumb -Os`, here are samples of code sizes reached on selected cores:
- Cortex-M0: 2988 bytes
- Cortex-M4: 2900 bytes
- Cortex-A7: 2924 bytes
Clang was also tried but tends to generate larger code (by about 10%). For
details, see `sizes.sh`.
**What's included:**
- Full input validation and (de)serialisation of input/outputs to/from bytes.
- Cleaning up secret values from the stack before returning from a function.
- The code has no dependency on libc functions or the toolchain's runtime
library (such as helpers for long multiply); this can be checked for the
Arm-GCC toolchain with the `deps.sh` script.
**What's excluded:**
- A secure RNG function needs to be provided externally, see
`p256_generate_random()` in `p256-m.h`.
## RAM usage
p256-m doesn't use any dynamic memory (on the heap), only the stack. Here's
how much stack is used by each of its 4 public functions on selected cores:
| Function | Cortex-M0 | Cortex-M4 | Cortex-A7 |
| ------------------------- | --------: | --------: | --------: |
| `p256_gen_keypair` | 608 | 564 | 564 |
| `p256_ecdh_shared_secret` | 640 | 596 | 596 |
| `p256_ecdsa_sign` | 664 | 604 | 604 |
| `p256_ecdsa_verify` | 752 | 700 | 700 |
For details, see `stack.sh`, `wcs.py` and `libc.msu` (the above figures assume
that the externally-provided RNG function uses at most 384 bytes of stack).
## Runtime performance
Here are the timings of each public function in milliseconds measured on
platforms based on a selection of cores:
- Cortex-M0 at 48 MHz: STM32F091 board running Mbed OS 6
- Cortex-M4 at 100 MHz: STM32F411 board running Mbed OS 6
- Cortex-A7 at 900 MHz: Raspberry Pi 2B running Raspbian Buster
| Function | Cortex-M0 | Cortex-M4 | Cortex-A7 |
| ------------------------- | --------: | --------: | --------: |
| `p256_gen_keypair` | 921 | 145 | 11 |
| `p256_ecdh_shared_secret` | 922 | 144 | 11 |
| `p256_ecdsa_sign` | 990 | 155 | 12 |
| `p256_ecdsa_verify` | 1976 | 309 | 24 |
| Sum of the above | 4809 | 753 | 59 |
The sum of these operations corresponds to a TLS handshake using ECDHE-ECDSA
with mutual authentication based on raw public keys or directly-trusted
certificates (otherwise, add one 'verify' for each link in the peer's
certificate chain).
_Note_: the above figures where obtained by compiling with GCC, which is able
to use inline assembly. Without that inline assembly (22 lines for Cortex-M0,
1 line for Cortex-M4), the code would be roughly 2 times slower on those
platforms. (The effect is much less important on the Cortex-A7 core.)
For details, see `bench.sh`, `benchmark.c` and `on-target-benchmark/`.
## Comparison with other implementations
The most relevant/convenient implementation for comparisons is
[TinyCrypt](https://github.com/intel/tinycrypt), as it's also a standalone
implementation of ECDH and ECDSA on P-256 only, that also targets constrained
devices. Other implementations tend to implement many curves and build on a
shared bignum/MPI module (possibly also supporting RSA), which makes fair
comparisons less convenient.
The scripts used for TinyCrypt measurements are available in [this
branch](https://github.com/mpg/tinycrypt/tree/measurements), based on version
0.2.8.
**Code size**
| Core | p256-m | TinyCrypt |
| --------- | -----: | --------: |
| Cortex-M0 | 2988 | 6134 |
| Cortex-M4 | 2900 | 5934 |
| Cortex-A7 | 2924 | 5934 |
**RAM usage**
TinyCrypto also uses no heap, only the stack. Here's the RAM used by each
operation on a Cortex-M0 core:
| operation | p256-m | TinyCrypt |
| ------------------ | -----: | --------: |
| key generation | 608 | 824 |
| ECDH shared secret | 640 | 728 |
| ECDSA sign | 664 | 880 |
| ECDSA verify | 752 | 824 |
On a Cortex-M4 or Cortex-A7 core (identical numbers):
| operation | p256-m | TinyCrypt |
| ------------------ | -----: | --------: |
| key generation | 564 | 796 |
| ECDH shared secret | 596 | 700 |
| ECDSA sign | 604 | 844 |
| ECDSA verify | 700 | 808 |
**Runtime performance**
Here are the timings of each operation in milliseconds measured on
platforms based on a selection of cores:
_Cortex-M0_ at 48 MHz: STM32F091 board running Mbed OS 6
| Operation | p256-m | TinyCrypt |
| ------------------ | -----: | --------: |
| Key generation | 921 | 979 |
| ECDH shared secret | 922 | 975 |
| ECDSA sign | 990 | 1009 |
| ECDSA verify | 1976 | 1130 |
| Sum of those 4 | 4809 | 4093 |
_Cortex-M4_ at 100 MHz: STM32F411 board running Mbed OS 6
| Operation | p256-m | TinyCrypt |
| ------------------ | -----: | --------: |
| Key generation | 145 | 178 |
| ECDH shared secret | 144 | 177 |
| ECDSA sign | 155 | 188 |
| ECDSA verify | 309 | 210 |
| Sum of those 4 | 753 | 753 |
_Cortex-A7_ at 900 MHz: Raspberry Pi 2B running Raspbian Buster
| Operation | p256-m | TinyCrypt |
| ------------------ | -----: | --------: |
| Key generation | 11 | 13 |
| ECDH shared secret | 11 | 13 |
| ECDSA sign | 12 | 14 |
| ECDSA verify | 24 | 15 |
| Sum of those 4 | 59 | 55 |
_64-bit Intel_ (i7-6500U at 2.50GHz) laptop running Ubuntu 20.04
Note: results in microseconds (previous benchmarks in milliseconds)
| Operation | p256-m | TinyCrypt |
| ------------------ | -----: | --------: |
| Key generation | 1060 | 1627 |
| ECDH shared secret | 1060 | 1611 |
| ECDSA sign | 1136 | 1712 |
| ECDSA verify | 2279 | 1888 |
| Sum of those 4 | 5535 | 6838 |
**Other differences**
- While p256-m fully validates all inputs, Tinycrypt's ECDH shared secret
function doesn't include validation of the peer's public key, which should be
done separately by the user for static ECDH (there are attacks [when users
forget](https://link.springer.com/chapter/10.1007/978-3-319-24174-6_21)).
- The two implementations have slightly different security characteristics:
p256-m is fully constant-time from the ground up so should be more robust
than TinyCrypt against powerful local attackers (such as an untrusted OS
attacking a secure enclave); on the other hand TinyCrypt includes coordinate
randomisation which protects against some passive physical attacks (such as
DPA, see Table 3, column C9 of [this
paper](https://www.esat.kuleuven.be/cosic/publications/article-2293.pdf#page=12)),
which p256-m completely ignores.
- TinyCrypt's code looks like it could easily be expanded to support other
curves, while p256-m has much more hard-coded to minimize code size (see
"Notes about other curves" below).
- TinyCrypt uses a specialised routine for reduction modulo the curve prime,
exploiting its structure as a Solinas prime, which should be faster than the
generic Montgomery reduction used by p256-m, but other factors appear to
compensate for that.
- TinyCrypt uses Co-Z Jacobian formulas for point operation, which should be
faster (though a bit larger) than the mixed affine-Jacobian formulas
used by p256-m, but again other factors appear to compensate for that.
- p256-m uses bits of inline assembly for 64-bit multiplication on the
platforms used for benchmarking, while TinyCrypt uses only C (and the
compiler's runtime library).
- TinyCrypt uses a specialised routine based on Shamir's trick for
ECDSA verification, which gives much better performance than the generic
code that p256-m uses in order to minimize code size.
## Design overview
The implementation is contained in a single file to keep most functions static
and allow for more optimisations. It is organized in multiple layers:
- Fixed-width multi-precision arithmetic
- Fixed-width modular arithmetic
- Operations on curve points
- Operations with scalars
- The public API
**Multi-precision arithmetic.**
Large integers are represented as arrays of `uint32_t` limbs. When carries may
occur, casts to `uint64_t` are used to nudge the compiler towards using the
CPU's carry flag. When overflow may occur, functions return a carry flag.
This layer contains optional assembly for Cortex-M and Cortex-A cores, for the
internal `u32_muladd64()` function, as well as two pure C versions of this
function, depending on whether `MUL64_IS_CONSTANT_TIME`.
This layer's API consists of:
- addition, subtraction;
- multiply-and-add, shift by one limb (for Montgomery multiplication);
- conditional assignment, assignment of a small value;
- comparison of two values for equality, comparison to 0 for equality;
- (de)serialization as big-endian arrays of bytes.
**Modular arithmetic.**
All modular operations are done in the Montgomery domain, that is x is
represented by `x * 2^256 mod m`; integers need to be converted to that domain
before computations, and back from it afterwards. Montgomery constants
associated to the curve's p and n are pre-computed and stored in static
structures.
Modular inversion is computed using Fermat's little theorem to get
constant-time behaviour with respect to the value being inverted.
This layer's API consists of:
- the curve's constants p and n (and associated Montgomery constants);
- modular addition, subtraction, multiplication, and inversion;
- assignment of a small value;
- conversion to/from Montgomery domain;
- (de)serialization to/from bytes with integrated range checking and
Montgomery domain conversion.
**Operations on curve points.**
Curve points are represented using either affine or Jacobian coordinates;
affine coordinates are extended to represent 0 as (0,0). Individual
coordinates are always in the Montgomery domain.
Not all formulas associated with affine or Jacobian coordinates are complete;
great care is taken to document and satisfy each function's pre-conditions.
This layer's API consists of:
- curve constants: b from the equation, the base point's coordinates;
- point validity check (on the curve and not 0);
- Jacobian to affine coordinate conversion;
- point doubling in Jacobian coordinates (complete formulas);
- point addition in mixed affine-Jacobian coordinates (P not in {0, Q, -Q});
- point addition-or-doubling in affine coordinates (leaky version, only used
for ECDSA verify where all data is public);
- (de)serialization to/from bytes with integrated validity checking
**Scalar operations.**
The crucial function here is scalar multiplication. It uses a signed binary
ladder, which is a variant of the good old double-and-add algorithm where an
addition/subtraction is performed at each step. Again, care is taken to make
sure the pre-conditions for the addition formulas are always satisfied. The
signed binary ladder only works if the scalar is odd; this is ensured by
negating both the scalar (mod n) and the input point if necessary.
This layer's API consists of:
- scalar multiplication
- de-serialization from bytes with integrated range checking
- generation of a scalar and its associated public key
**Public API.**
This layer builds on the others, but unlike them, all inputs and outputs are
byte arrays. Key generation and ECDH shared secret computation are thin
wrappers around internal functions, just taking care of format conversions and
errors. The ECDSA functions have more non-trivial logic.
This layer's API consists of:
- key-pair generation
- ECDH shared secret computation
- ECDSA signature creation
- ECDSA signature verification
**Testing.**
A self-contained, straightforward, pure-Python implementation was first
produced as a warm-up and to help check intermediate values. Test vectors from
various sources are embedded and used to validate the implementation.
This implementation, `p256.py`, is used by a second Python script,
`gen-test-data.py`, to generate additional data for both positive and negative
testing, available from a C header file, that is then used by the closed-box
and open-box test programs.
p256-m can be compiled with extra instrumentation to mark secret data and
allow either valgrind or MemSan to check that no branch or memory access
depends on it (even indirectly). Macros are defined for this purpose near the
top of the file.
**Tested platforms.**
There are 4 versions of the internal function `u32_muladd64`: two assembly
versions, for Cortex-M/A cores with or without the DSP extension, and two
pure-C versions, depending on whether `MUL64_IS_CONSTANT_TIME`.
Tests are run on the following platforms:
- `make` on x64 tests the pure-C version without `MUL64_IS_CONSTANT_TIME`
(with Clang).
- `./consttime.sh` on x64 tests both pure-C versions (with Clang).
- `make` on Arm v7-A (Raspberry Pi 2) tests the Arm-DSP assembly version (with
Clang).
- `on-target-*box` on boards based on Cortex-M0 and M4 cores test both
assembly versions (with GCC).
In addition:
- `sizes.sh` builds the code for three Arm cores with GCC and Clang.
- `deps.sh` checks for external dependencies with GCC.
## Notes about other curves
It should be clear that minimal code size can only be reached by specializing
the implementation to the curve at hand. Here's a list of things in the
implementation that are specific to the NIST P-256 curve, and how the
implementation could be changed to expand to other curves, layer by layer (see
"Design Overview" above).
**Fixed-width multi-precision arithmetic:**
- The number of limbs is hard-coded to 8. For other 256-bit curves, nothing to
change. For a curve of another size, hard-code to another value. For multiple
curves of various sizes, add a parameter to each function specifying the
number of limbs; when declaring arrays, always use the maximum number of
limbs.
**Fixed-width modular arithmetic:**
- The values of the curve's constant p and n, and their associated Montgomery
constants, are hard-coded. For another curve, just hard-code the new constants.
For multiple other curves, define all the constants, and from this layer's API
only keep the functions that already accept a `mod` parameter (that is, remove
convenience functions `m256_xxx_p()`).
- The number of limbs is again hard-coded to 8. See above, but it order to
support multiple sizes there is no need to add a new parameter to functions
in this layer: the existing `mod` parameter can include the number of limbs as
well.
**Operations on curve points:**
- The values of the curve's constants b (constant term from the equation) and
gx, gy (coordinates of the base point) are hard-coded. For another curve,
hard-code the other values. For multiple curves, define each curve's value and
add a "curve id" parameter to all functions in this layer.
- The value of the curve's constant a is implicitly hard-coded to `-3` by using
a standard optimisation to save one multiplication in the first step of
`point_double()`. For curves that don't have a == -3, replace that with the
normal computation.
- The fact that b != 0 in the curve equation is used indirectly, to ensure
that (0, 0) is not a point on the curve and re-use that value to represent
the point 0. As far as I know, all Short Weierstrass curves standardized so
far have b != 0.
- The shape of the curve is assumed to be Short Weierstrass. For other curve
shapes (Montgomery, (twisted) Edwards), this layer would probably look very
different (both implementation and API).
**Scalar operations:**
- If multiple curves are to be supported, all function in this layer need to
gain a new "curve id" parameter.
- This layer assumes that the bit size of the curve's order n is the same as
that of the modulus p. This is true of most curves standardized so far, the
only exception being secp224k1. If that curve were to be supported, the
representation of `n` and scalars would need adapting to allow for an extra
limb.
- The bit size of the curve's order is hard-coded in `scalar_mult()`. For
multiple curves, this should be deduced from the "curve id" parameter.
- The `scalar_mult()` function exploits the fact that the second least
significant bit of the curve's order n is set in order to avoid a special
case. For curve orders that don't meet this criterion, we can just handle that
special case (multiplication by +-2) separately (always compute that and
conditionally assign it to the result).
- The shape of the curve is again assumed to be Short Weierstrass. For other curve
shapes (Montgomery, (twisted) Edwards), this layer would probably have a
very different implementation.
**Public API:**
- For multiple curves, all functions in this layer would need to gain a "curve
id" parameter and handle variable-sized input/output.
- The shape of the curve is again assumed to be Short Weierstrass. For other curve
shapes (Montgomery, (twisted) Edwards), the ECDH API would probably look
quite similar (with differences in the size of public keys), but the ECDSA API
wouldn't apply and an EdDSA API would look pretty different.
## Notes about other platforms
While p256-m is standard C99, it is written with constrained 32-bit platforms
in mind and makes a few assumptions about the platform:
- The types `uint8_t`, `uint16_t`, `uint32_t` and `uint64_t` exist.
- 32-bit unsigned addition and subtraction with carry are constant time.
- 16x16->32-bit unsigned multiplication is available and constant time.
Also, on platforms on which 64-bit addition and subtraction with carry, or
even 64x64->128-bit multiplication, are available, p256-m makes no use of
them, though they could significantly improve performance.
This could be improved by replacing uses of arrays of `uint32_t` with a
defined type throughout the internal APIs, and then on 64-bit platforms define
that type to be an array of `uint64_t` instead, and making the obvious
adaptations in the multi-precision arithmetic layer.
Finally, the optional assembly code (which boosts performance by a factor 2 on
tested Cortex-M CPUs, while slightly reducing code size and stack usage) is
currently only available with compilers that support GCC's extended asm
syntax (which includes GCC and Clang).

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,135 @@
/*
* Interface of curve P-256 (ECDH and ECDSA)
*
* Copyright The Mbed TLS Contributors
* Author: Manuel Pégourié-Gonnard.
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#ifndef P256_M_H
#define P256_M_H
#include <stdint.h>
#include <stddef.h>
/* Status codes */
#define P256_SUCCESS 0
#define P256_RANDOM_FAILED -1
#define P256_INVALID_PUBKEY -2
#define P256_INVALID_PRIVKEY -3
#define P256_INVALID_SIGNATURE -4
#ifdef __cplusplus
extern "C" {
#endif
/*
* RNG function - must be provided externally and be cryptographically secure.
*
* in: output - must point to a writable buffer of at least output_size bytes.
* output_size - the number of random bytes to write to output.
* out: output is filled with output_size random bytes.
* return 0 on success, non-zero on errors.
*/
extern int p256_generate_random(uint8_t * output, unsigned output_size);
/*
* ECDH/ECDSA generate key pair
*
* [in] draws from p256_generate_random()
* [out] priv: on success, holds the private key, as a big-endian integer
* [out] pub: on success, holds the public key, as two big-endian integers
*
* return: P256_SUCCESS on success
* P256_RANDOM_FAILED on failure
*/
int p256_gen_keypair(uint8_t priv[32], uint8_t pub[64]);
/*
* ECDH compute shared secret
*
* [out] secret: on success, holds the shared secret, as a big-endian integer
* [in] priv: our private key as a big-endian integer
* [in] pub: the peer's public key, as two big-endian integers
*
* return: P256_SUCCESS on success
* P256_INVALID_PRIVKEY if priv is invalid
* P256_INVALID_PUBKEY if pub is invalid
*/
int p256_ecdh_shared_secret(uint8_t secret[32],
const uint8_t priv[32], const uint8_t pub[64]);
/*
* ECDSA sign
*
* [in] draws from p256_generate_random()
* [out] sig: on success, holds the signature, as two big-endian integers
* [in] priv: our private key as a big-endian integer
* [in] hash: the hash of the message to be signed
* [in] hlen: the size of hash in bytes
*
* return: P256_SUCCESS on success
* P256_RANDOM_FAILED on failure
* P256_INVALID_PRIVKEY if priv is invalid
*/
int p256_ecdsa_sign(uint8_t sig[64], const uint8_t priv[32],
const uint8_t *hash, size_t hlen);
/*
* ECDSA verify
*
* [in] sig: the signature to be verified, as two big-endian integers
* [in] pub: the associated public key, as two big-endian integers
* [in] hash: the hash of the message that was signed
* [in] hlen: the size of hash in bytes
*
* return: P256_SUCCESS on success - the signature was verified as valid
* P256_INVALID_PUBKEY if pub is invalid
* P256_INVALID_SIGNATURE if the signature was found to be invalid
*/
int p256_ecdsa_verify(const uint8_t sig[64], const uint8_t pub[64],
const uint8_t *hash, size_t hlen);
/*
* Public key validation
*
* Note: you never need to call this function, as all other functions always
* validate their input; however it's availabe if you want to validate the key
* without performing an operation.
*
* [in] pub: the public key, as two big-endian integers
*
* return: P256_SUCCESS if the key is valid
* P256_INVALID_PUBKEY if pub is invalid
*/
int p256_validate_pubkey(const uint8_t pub[64]);
/*
* Private key validation
*
* Note: you never need to call this function, as all other functions always
* validate their input; however it's availabe if you want to validate the key
* without performing an operation.
*
* [in] priv: the private key, as a big-endian integer
*
* return: P256_SUCCESS if the key is valid
* P256_INVALID_PRIVKEY if priv is invalid
*/
int p256_validate_privkey(const uint8_t priv[32]);
/*
* Compute public key from private key
*
* [out] pub: the associated public key, as two big-endian integers
* [in] priv: the private key, as a big-endian integer
*
* return: P256_SUCCESS on success
* P256_INVALID_PRIVKEY if priv is invalid
*/
int p256_public_from_private(uint8_t pub[64], const uint8_t priv[32]);
#ifdef __cplusplus
}
#endif
#endif /* P256_M_H */

View File

@@ -0,0 +1,312 @@
/*
* Driver entry points for p256-m
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#include "mbedtls/platform.h"
#include "p256-m_driver_entrypoints.h"
#include "p256-m/p256-m.h"
#include "psa/crypto.h"
#include <stddef.h>
#include <string.h>
#include "psa_crypto_driver_wrappers_no_static.h"
#if defined(MBEDTLS_PSA_P256M_DRIVER_ENABLED)
/* INFORMATION ON PSA KEY EXPORT FORMATS:
*
* PSA exports SECP256R1 keys in two formats:
* 1. Keypair format: 32 byte string which is just the private key (public key
* can be calculated from the private key)
* 2. Public Key format: A leading byte 0x04 (indicating uncompressed format),
* followed by the 64 byte public key. This results in a
* total of 65 bytes.
*
* p256-m's internal format for private keys matches PSA. Its format for public
* keys is only 64 bytes: the same as PSA but without the leading byte (0x04).
* Hence, when passing public keys from PSA to p256-m, the leading byte is
* removed.
*
* Shared secret and signature have the same format between PSA and p256-m.
*/
#define PSA_PUBKEY_SIZE 65
#define PSA_PUBKEY_HEADER_BYTE 0x04
#define P256_PUBKEY_SIZE 64
#define PRIVKEY_SIZE 32
#define SHARED_SECRET_SIZE 32
#define SIGNATURE_SIZE 64
#define CURVE_BITS 256
/* Convert between p256-m and PSA error codes */
static psa_status_t p256_to_psa_error(int ret)
{
switch (ret) {
case P256_SUCCESS:
return PSA_SUCCESS;
case P256_INVALID_PUBKEY:
case P256_INVALID_PRIVKEY:
return PSA_ERROR_INVALID_ARGUMENT;
case P256_INVALID_SIGNATURE:
return PSA_ERROR_INVALID_SIGNATURE;
case P256_RANDOM_FAILED:
default:
return PSA_ERROR_GENERIC_ERROR;
}
}
psa_status_t p256_transparent_import_key(const psa_key_attributes_t *attributes,
const uint8_t *data,
size_t data_length,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length,
size_t *bits)
{
/* Check the key size */
if (*bits != 0 && *bits != CURVE_BITS) {
return PSA_ERROR_NOT_SUPPORTED;
}
/* Validate the key (and its type and size) */
psa_key_type_t type = psa_get_key_type(attributes);
if (type == PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_SECP_R1)) {
if (data_length != PSA_PUBKEY_SIZE) {
return *bits == 0 ? PSA_ERROR_NOT_SUPPORTED : PSA_ERROR_INVALID_ARGUMENT;
}
/* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
if (p256_validate_pubkey(data + 1) != P256_SUCCESS) {
return PSA_ERROR_INVALID_ARGUMENT;
}
} else if (type == PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)) {
if (data_length != PRIVKEY_SIZE) {
return *bits == 0 ? PSA_ERROR_NOT_SUPPORTED : PSA_ERROR_INVALID_ARGUMENT;
}
if (p256_validate_privkey(data) != P256_SUCCESS) {
return PSA_ERROR_INVALID_ARGUMENT;
}
} else {
return PSA_ERROR_NOT_SUPPORTED;
}
*bits = CURVE_BITS;
/* We only support the export format for input, so just copy. */
if (key_buffer_size < data_length) {
return PSA_ERROR_BUFFER_TOO_SMALL;
}
memcpy(key_buffer, data, data_length);
*key_buffer_length = data_length;
return PSA_SUCCESS;
}
psa_status_t p256_transparent_export_public_key(const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
uint8_t *data,
size_t data_size,
size_t *data_length)
{
/* Is this the right curve? */
size_t bits = psa_get_key_bits(attributes);
psa_key_type_t type = psa_get_key_type(attributes);
if (bits != CURVE_BITS || type != PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)) {
return PSA_ERROR_NOT_SUPPORTED;
}
/* Validate sizes, as p256-m expects fixed-size buffers */
if (key_buffer_size != PRIVKEY_SIZE) {
return PSA_ERROR_INVALID_ARGUMENT;
}
if (data_size < PSA_PUBKEY_SIZE) {
return PSA_ERROR_BUFFER_TOO_SMALL;
}
/* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
data[0] = PSA_PUBKEY_HEADER_BYTE;
int ret = p256_public_from_private(data + 1, key_buffer);
if (ret == P256_SUCCESS) {
*data_length = PSA_PUBKEY_SIZE;
}
return p256_to_psa_error(ret);
}
psa_status_t p256_transparent_generate_key(
const psa_key_attributes_t *attributes,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length)
{
/* We don't use this argument, but the specification mandates the signature
* of driver entry-points. (void) used to avoid compiler warning. */
(void) attributes;
/* Validate sizes, as p256-m expects fixed-size buffers */
if (key_buffer_size != PRIVKEY_SIZE) {
return PSA_ERROR_BUFFER_TOO_SMALL;
}
/*
* p256-m's keypair generation function outputs both public and private
* keys. Allocate a buffer to which the public key will be written. The
* private key will be written to key_buffer, which is passed to this
* function as an argument. */
uint8_t public_key_buffer[P256_PUBKEY_SIZE];
int ret = p256_gen_keypair(key_buffer, public_key_buffer);
if (ret == P256_SUCCESS) {
*key_buffer_length = PRIVKEY_SIZE;
}
return p256_to_psa_error(ret);
}
psa_status_t p256_transparent_key_agreement(
const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
psa_algorithm_t alg,
const uint8_t *peer_key,
size_t peer_key_length,
uint8_t *shared_secret,
size_t shared_secret_size,
size_t *shared_secret_length)
{
/* We don't use these arguments, but the specification mandates the
* sginature of driver entry-points. (void) used to avoid compiler
* warning. */
(void) attributes;
(void) alg;
/* Validate sizes, as p256-m expects fixed-size buffers */
if (key_buffer_size != PRIVKEY_SIZE || peer_key_length != PSA_PUBKEY_SIZE) {
return PSA_ERROR_INVALID_ARGUMENT;
}
if (shared_secret_size < SHARED_SECRET_SIZE) {
return PSA_ERROR_BUFFER_TOO_SMALL;
}
/* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
const uint8_t *peer_key_p256m = peer_key + 1;
int ret = p256_ecdh_shared_secret(shared_secret, key_buffer, peer_key_p256m);
if (ret == P256_SUCCESS) {
*shared_secret_length = SHARED_SECRET_SIZE;
}
return p256_to_psa_error(ret);
}
psa_status_t p256_transparent_sign_hash(
const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length)
{
/* We don't use these arguments, but the specification mandates the
* sginature of driver entry-points. (void) used to avoid compiler
* warning. */
(void) attributes;
(void) alg;
/* Validate sizes, as p256-m expects fixed-size buffers */
if (key_buffer_size != PRIVKEY_SIZE) {
return PSA_ERROR_INVALID_ARGUMENT;
}
if (signature_size < SIGNATURE_SIZE) {
return PSA_ERROR_BUFFER_TOO_SMALL;
}
int ret = p256_ecdsa_sign(signature, key_buffer, hash, hash_length);
if (ret == P256_SUCCESS) {
*signature_length = SIGNATURE_SIZE;
}
return p256_to_psa_error(ret);
}
/* This function expects the key buffer to contain a PSA public key,
* as exported by psa_export_public_key() */
static psa_status_t p256_verify_hash_with_public_key(
const uint8_t *key_buffer,
size_t key_buffer_size,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length)
{
/* Validate sizes, as p256-m expects fixed-size buffers */
if (key_buffer_size != PSA_PUBKEY_SIZE || *key_buffer != PSA_PUBKEY_HEADER_BYTE) {
return PSA_ERROR_INVALID_ARGUMENT;
}
if (signature_length != SIGNATURE_SIZE) {
return PSA_ERROR_INVALID_SIGNATURE;
}
/* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
const uint8_t *public_key_p256m = key_buffer + 1;
int ret = p256_ecdsa_verify(signature, public_key_p256m, hash, hash_length);
return p256_to_psa_error(ret);
}
psa_status_t p256_transparent_verify_hash(
const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length)
{
/* We don't use this argument, but the specification mandates the signature
* of driver entry-points. (void) used to avoid compiler warning. */
(void) alg;
psa_status_t status;
uint8_t public_key_buffer[PSA_PUBKEY_SIZE];
size_t public_key_buffer_size = PSA_PUBKEY_SIZE;
size_t public_key_length = PSA_PUBKEY_SIZE;
/* As p256-m doesn't require dynamic allocation, we want to avoid it in
* the entrypoint functions as well. psa_driver_wrapper_export_public_key()
* requires size_t*, so we use a pointer to a stack variable. */
size_t *public_key_length_ptr = &public_key_length;
/* The contents of key_buffer may either be the 32 byte private key
* (keypair format), or 0x04 followed by the 64 byte public key (public
* key format). To ensure the key is in the latter format, the public key
* is exported. */
status = psa_driver_wrapper_export_public_key(
attributes,
key_buffer,
key_buffer_size,
public_key_buffer,
public_key_buffer_size,
public_key_length_ptr);
if (status != PSA_SUCCESS) {
goto exit;
}
status = p256_verify_hash_with_public_key(
public_key_buffer,
public_key_buffer_size,
hash,
hash_length,
signature,
signature_length);
exit:
return status;
}
#endif /* MBEDTLS_PSA_P256M_DRIVER_ENABLED */

View File

@@ -0,0 +1,219 @@
/*
* Driver entry points for p256-m
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#ifndef P256M_DRIVER_ENTRYPOINTS_H
#define P256M_DRIVER_ENTRYPOINTS_H
#if defined(MBEDTLS_PSA_P256M_DRIVER_ENABLED)
#ifndef PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT
#define PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT
#endif /* PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT */
#endif /* MBEDTLS_PSA_P256M_DRIVER_ENABLED */
#include "psa/crypto_types.h"
/** Import SECP256R1 key.
*
* \param[in] attributes The attributes of the key to use for the
* operation.
* \param[in] data The raw key material. For private keys
* this must be a big-endian integer of 32
* bytes; for public key this must be an
* uncompressed ECPoint (65 bytes).
* \param[in] data_length The size of the raw key material.
* \param[out] key_buffer The buffer to contain the key data in
* output format upon successful return.
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
* \param[out] key_buffer_length The length of the data written in \p
* key_buffer in bytes.
* \param[out] bits The bitsize of the key.
*
* \retval #PSA_SUCCESS
* Success. Keypair generated and stored in buffer.
* \retval #PSA_ERROR_NOT_SUPPORTED
* The input is not supported by this driver (not SECP256R1).
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The input is invalid.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* \p key_buffer_size is too small.
*/
psa_status_t p256_transparent_import_key(const psa_key_attributes_t *attributes,
const uint8_t *data,
size_t data_length,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length,
size_t *bits);
/** Export SECP256R1 public key, from the private key.
*
* \param[in] attributes The attributes of the key to use for the
* operation.
* \param[in] key_buffer The private key in the export format.
* \param[in] key_buffer_size The size of the private key in bytes.
* \param[out] data The buffer to contain the public key in
* the export format upon successful return.
* \param[in] data_size The size of the \p data buffer in bytes.
* \param[out] data_length The length written to \p data in bytes.
*
* \retval #PSA_SUCCESS
* Success. Keypair generated and stored in buffer.
* \retval #PSA_ERROR_NOT_SUPPORTED
* The input is not supported by this driver (not SECP256R1).
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The input is invalid.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* \p key_buffer_size is too small.
*/
psa_status_t p256_transparent_export_public_key(const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
uint8_t *data,
size_t data_size,
size_t *data_length);
/** Generate SECP256R1 ECC Key Pair.
* Interface function which calls the p256-m key generation function and
* places it in the key buffer provided by the caller (Mbed TLS) in the
* correct format. For a SECP256R1 curve this is the 32 bit private key.
*
* \param[in] attributes The attributes of the key to use for the
* operation.
* \param[out] key_buffer The buffer to contain the key data in
* output format upon successful return.
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
* \param[out] key_buffer_length The length of the data written in \p
* key_buffer in bytes.
*
* \retval #PSA_SUCCESS
* Success. Keypair generated and stored in buffer.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* \p key_buffer_size is too small.
* \retval #PSA_ERROR_GENERIC_ERROR
* The internal RNG failed.
*/
psa_status_t p256_transparent_generate_key(
const psa_key_attributes_t *attributes,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length);
/** Perform raw key agreement using p256-m's ECDH implementation
* \param[in] attributes The attributes of the key to use for the
* operation.
* \param[in] key_buffer The buffer containing the private key
* in the format specified by PSA.
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
* \param[in] alg A key agreement algorithm that is
* compatible with the type of the key.
* \param[in] peer_key The buffer containing the peer's public
* key in format specified by PSA.
* \param[in] peer_key_length Size of the \p peer_key buffer in
* bytes.
* \param[out] shared_secret The buffer to which the shared secret
* is to be written.
* \param[in] shared_secret_size Size of the \p shared_secret buffer in
* bytes.
* \param[out] shared_secret_length On success, the number of bytes that
* make up the returned shared secret.
* \retval #PSA_SUCCESS
* Success. Shared secret successfully calculated.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The input is invalid.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* \p shared_secret_size is too small.
*/
psa_status_t p256_transparent_key_agreement(
const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
psa_algorithm_t alg,
const uint8_t *peer_key,
size_t peer_key_length,
uint8_t *shared_secret,
size_t shared_secret_size,
size_t *shared_secret_length);
/** Sign an already-calculated hash with a private key using p256-m's ECDSA
* implementation
* \param[in] attributes The attributes of the key to use for the
* operation.
* \param[in] key_buffer The buffer containing the private key
* in the format specified by PSA.
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
* \param[in] alg A signature algorithm that is compatible
* with the type of the key.
* \param[in] hash The hash to sign.
* \param[in] hash_length Size of the \p hash buffer in bytes.
* \param[out] signature Buffer where signature is to be written.
* \param[in] signature_size Size of the \p signature buffer in bytes.
* \param[out] signature_length On success, the number of bytes
* that make up the returned signature value.
*
* \retval #PSA_SUCCESS
* Success. Hash was signed successfully.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The input is invalid.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* \p signature_size is too small.
* \retval #PSA_ERROR_GENERIC_ERROR
* The internal RNG failed.
*/
psa_status_t p256_transparent_sign_hash(
const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length);
/** Verify the signature of a hash using a SECP256R1 public key using p256-m's
* ECDSA implementation.
*
* \note p256-m expects a 64 byte public key, but the contents of the key
buffer may be the 32 byte keypair representation or the 65 byte
public key representation. As a result, this function calls
psa_driver_wrapper_export_public_key() to ensure the public key
can be passed to p256-m.
*
* \param[in] attributes The attributes of the key to use for the
* operation.
*
* \param[in] key_buffer The buffer containing the key
* in the format specified by PSA.
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
* \param[in] alg A signature algorithm that is compatible with
* the type of the key.
* \param[in] hash The hash whose signature is to be
* verified.
* \param[in] hash_length Size of the \p hash buffer in bytes.
* \param[in] signature Buffer containing the signature to verify.
* \param[in] signature_length Size of the \p signature buffer in bytes.
*
* \retval #PSA_SUCCESS
* The signature is valid.
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The calculation was performed successfully, but the passed
* signature is not a valid signature.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The input is invalid.
*/
psa_status_t p256_transparent_verify_hash(
const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length);
#endif /* P256M_DRIVER_ENTRYPOINTS_H */